DOI QR코드

DOI QR Code

벼 재배 시 활성 바이오차 팰렛 비료 시용에 따른 논 표면수와 토양의 주요 양분 함량 및 벼 생육에 미치는 영향

Influences of Major Nutrients in Surface Water, Soil and Growth Responses to Application of Supplemental Activated Biochar Pellet Fertilizers in Rice (Oryza sativa L.) Cultivation

  • 이상범 (국립식량과학원 작물기초기반과) ;
  • 박도균 (국립농업과학원 기후변화평가과) ;
  • 정창윤 (루이지애나주립대학) ;
  • 남주희 (경기도농업기술원 친환경미생물연구소) ;
  • 김민정 (국립농업과학원 유기농업과) ;
  • 남홍식 (국립농업과학원 유기농업과) ;
  • 심창기 (국립농업과학원 유기농업과) ;
  • 홍승길 (농촌진흥청 국외농업기술과) ;
  • 신중두 ((주)다학바이오텍)
  • Lee, SangBeom (Crop Foundation Research Division, National Institute of Crop Science) ;
  • Park, DoGyun (Dept. of Assessment of Climate Change, National Institute of Agricultural Sciences) ;
  • Jeong, ChangYoon (Red River Research Station, Louisiana State University) ;
  • Nam, JooHee (Eco-friendly Environment & Microorganism Research Institute, Gyenggi-Do Agricultural Research & Extension Services) ;
  • Kim, MinJeong (Organic Agriculture Division, National Institute of Agricultural Science) ;
  • Nam, HongShik (Organic Agriculture Division, National Institute of Agricultural Science) ;
  • Shim, ChangKi (Organic Agriculture Division, National Institute of Agricultural Science) ;
  • Hong, SeungGil (Division for KOPIA, Rural Development Administration) ;
  • Shin, JoungDu (Bio-technology of Multidisplinary Sciences, Co.)
  • 투고 : 2022.05.10
  • 심사 : 2022.06.06
  • 발행 : 2022.06.30

초록

본 실험은 벼 재배 기간 동안 활성바이오차팰렛 비료(ABPFs) 시용에 따른 벼 생육 반응, 논 표면수 및 토양의 화학적 특성 변화를 평가하였다. 시험구 처리는 대조구, 활성왕겨바이오차 팰렛 비료(ARHBP-40%), 활성 야자수 바이오차 팰렛 비료(APBP-40%)로 구성되어 있다. ARHBP-40% 처리구에서 논 표면수의 NH4+-N 및 PO4--P의 농도가 가장 낮게 관측되었으며, 대조구에서 토양 중의 NH4+-N농도가 이양 후 30일 까지 급격하게 감소되었다. 또한, 바이오차 혼합처리구에서 NH4+-N 농도는 이양 후 1일에 9.18 mg L-1로서 가장 낮았으며, 이양 후 56일에 ABPFs 처리구에서 NH4+-N 농도가 1 mg L-1 이하로 관측되었다. 이앙 후 30일 까지 ARHBP-40% 처리구에서 PO4--P농도는 0.06 mg L-1에서 0.08 mg L-1 범주로 처리구 사이로 가장 낮았다. 대조구에 있어 논 토양 중의 NH4+-N 농도는 이양 후 14일에 177.7 mg kg-1 에서 49.4 mg kg-1로 급격히 감소한 반면, NO3--N 농도는 13.2 mg kg-1로 가장 높았다. 토양 중의 P2O5 농도는 처리에 관계없이 이양 후부터 수확기 까지 증가하는 경향 이었다. APBP-40% 처리구에서 K2O 농도는 이앙 후 84일에 252.8 mg kg-1로 가장 높았다. 대조구에서 초장은 다른 처리구에 비해 높았으며, 수량은 대조구와 ARHBP-40% 처리구 사이에 차이가 인정되지 않았다. 따라서 농업 생태계에서 ARHBP-40% 처리를 함에 따라 질소와 인산 시용량을 줄일 수 있다.

The application of supplemental activated biochar pellet fertilizers (ABPFs) was evaluated by investigating key factors such as changes of surface paddy water and soil chemical properties and rice growth responses during the growing season. The treatments consisted of control, activated rice hull biochar pellet (ARHBP-40%), and activated palm biochar pellet (APBP-40%) applications. It was shown that the lowest NH4+-N and PO4--P concentrations were observed in surface paddy water to the ARHBP-40%, while the NH4+-N concentration in the control was abruptly decreased until 30 days after transplant in the soil. However, the lowest NH4+-N concentration in the blended biochar application was 9.18 mg L-1 at 1 day of transplant, but its ABPFs application was observed to be less than 1 mg L-1 at 56 days after transplant. The lowest PO4--P concentration in paddy water treated ARHBP-40% ranged from 0.06 mg L-1 to 0.08 mg L-1 until 30 days after transplant among the treatments. For the paddy soil, the NH4+-N concentration in the control was abruptly decreased from 177.7 mg kg-1 to 49.4 mg kg-1, while NO3--N concentration was highest, 13.2 mg kg-1 in 14 days after transplant. The P2O5 concentrations in the soils increased from rice transplants until the harvesting period regardless of the treatments. The highest K2O concentration was 252.8 mg kg-1 in the APBP-40% at 84 days after transplant. For the rice growth responses, plant height in the control was relatively high compared to others, but grain yield was not significantly different between the control and ARHBP-40%. The application of ARHBP-40% can minimize nitrogen and phosphorous application rates into the agro-ecosystem.

키워드

과제정보

We are thankful to the National Institute of Agricultural Sciences, Rural Development Administration.

참고문헌

  1. Godlewaska, P., Schmidt, H. P., Ok, Y. S. and Oleszczuk, P., "Biochar for composting improvement and contaminants reduction. A review", Bioresour. Technol., 246, pp. 193~202. (2017). https://doi.org/10.1016/j.biortech.2017.07.095
  2. Lehmann, J. and Joseph, S., "Biochar for Environmental Management", Science, Technology and Implementation, Routledge. (2015).
  3. Jeffery, S., Verheijen, F.G.A., VanderVelde, M. and Bastos, A.C., "A quantitative review of the effect of biochar application to soils on crop productivity using meta-analysis", Agric. Ecosyst. Environ., 144(1), pp. 175~187. (2011). https://doi.org/10.1016/j.agee.2011.08.015
  4. Wolf, B., Zheng, X., Bruggemann, N. Weiwei C., Michael D., Xingguo H., Mark A. S., Honghui W., Zhisheng Y. and Klaus B.B., "Grazing-induced reduction of natural nitrous oxide release from continental steppe", Nature, 464(7920), pp. 881~884 (2010). https://doi.org/10.1038/nature08931
  5. Shin, J., Jang, E., Park, S., Ravindran, B. and Chang, S., "Agro-environmental impacts, carbon sequestration, and profit analysis of blended biochar pellet application in the paddy soil-water system", J. Environ. Manage, 244, pp. 92~98. (2019). https://doi.org/10.1016/j.jenvman.2019.04.099
  6. Lehmann, J., Czimczik, C., Laird, D. and Sohi, S., "Stability of biochar in the soil", Biochar for environmental management: science and technology, Earthscan Publ., pp. 183~205. (2012).
  7. Kammann, C.I., Schmidt, H. P., Messerschmidt, N., Linsel, S., Steffens, D., Muller, C., Koyro, H. W., Conte, P. and Stephen, J., "Plant growth improvement mediated by nitrate capture in co-composted biochar", Sci. Rep., 5(1), pp. 1~13. (2015).
  8. Khalil, M., Gutser, R., Schmidhalter, U., "Effects of urease and nitrification inhibitors added to urea on nitrous oxide emissions from a loess soil", J. Plant Nutr. Soil Sci., 172(5), pp. 651~660. (2009). https://doi.org/10.1002/jpln.200800197
  9. Harmel, R.D., Torbert, H.A., Haggard, B.E., Haney, R. and Dozier, M., "Water quality impacts of converting to a poultry litter fertilization strategy", J. Environ. Qual., 33(6), pp. 2229~2242. (2004). https://doi.org/10.2134/jeq2004.2229
  10. Wang, Y., Lin, Y., Chiu, P. C., Imhoff, P. T. and Guo, M., "Phosphorus release behaviors of poultry litter biochar as a soil amendment", Sci. Total Environ., 512, pp. 454~463. (2015). https://doi.org/10.1016/j.scitotenv.2015.01.093
  11. EPA. A Long-Term Vision for Assessment, Restoration, and Protection under the Clean Water Act Section 2013, 303(d) Program. Available online: https://19january2017snapshot.epa.gov/new-version-cwa-303d-program-updated-framework-implementing-cwa-303d-program-responsibilities_html (accessed date; 14 April 2020).
  12. Hua, L., Wu, W. X., Liu, Y. X., McBride, M. and Chen, Y. X., "Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment", Environ. Sci. Pollut. Res., 16(1), pp. 1~9. (2009). https://doi.org/10.1007/s11356-008-0041-0
  13. Qin, S. W., Fan, X. H. and Wang, J. F., "The fertilization technique of five main crops", Fertilization and Agricultural Service in Chinese, Chemical Industry. (2001).
  14. Faloye, O. T., Alatise, M. O., Ajayi, A.E. and Ewulo, B. S., "Synergistic effects of biochar and inorganic fertilizer on maize (zea mays) yield in an alfisol under drip irrigation", Soil Tillage Res., 174, pp. 214~220. (2017). https://doi.org/10.1016/j.still.2017.07.013
  15. Reza, M. T., Lynam, J. G., Vasquez, V. R. and Coronella, C. J., "Pelletization of biochar from hydrothermally carbonized wood", Environ. Prog. Sustain. Energy., 31(2), pp. 225~234. (2012). https://doi.org/10.1002/ep.11615
  16. Fernandez-Escobar, R., Benlloch, M., Herrera, E. and Garcia-Novelo, J. M., "Effect of traditional and slow-release N fertilizers on the growth of olive nursery plants and N losses by leaching", Sci. Hortic., 101(1-2), pp. 39~49. (2004). https://doi.org/10.1016/j.scienta.2003.09.008
  17. Shin, J., Park, S. and Jeong, C., "Assessment of Agro-environmental impacts for supplemented methods to biochar manure pellets during rice (Oryza sativa L.) Cultivation", Energies, 13(8), 2070. (2020). https://doi.org/10.3390/en13082070
  18. Shin, J., Jang, E., Park, S., Ravindran, B. and Chang, S., Agro-environmental impacts, carbon sequestration, and profit analysis of blended biochar pellet application in the paddy soil-water system. J. Environ. Manage., 13(8), pp. 2070~2083. (2019). https://doi.org/10.1016/j.jenvman.2019.04.099
  19. Jiang, Y., Qian, H., Wang, L., Feng, J., Huang, S., Hungate, B. A., Kessel, C. V., Horwath, W. B., Zhang, X., Qin, X., Li, Y., Feng, X., Zhang, J., Deng, A., Zheng, C., Song, Z., Hu, S., Van Groenigen, K. J. and Zhang, W., "Limited potential of harvest index improvement to reduce methane emissions from rice paddies", Glob, Chang. Biol., 25(2), pp. 686~698. (2019). https://doi.org/10.1111/gcb.14529
  20. Tran, T.V., Bui, Q.T.P., Nguyen, T.D., Le, N.T.H. and Long, G.B., "A comparative study on the removal efficiency of metal ions (Cu2+, Ni2+, and Pb2+) using sugarcane bagasse-derived ZnCl2-activated carbon by the response surface methodology", Adsorp. Sci. Technol., 35(1-2), pp. 72~85. (2017). https://doi.org/10.1177/0263617416669152
  21. Li, Y., Zhang, X., Yang, R., Li, G. and Hu, C., "The role of H3PO4 in the preparation of activated carbon from NaOH-treated rice husk residues", RSC Adv., 5(41), pp. 32626~32636. (2015). https://doi.org/10.1039/C5RA04634C
  22. Mahdavi, A. R., Ghoresyhi, A. A., Rahimpour, A., Younesi, H. and Pirzadeh, K., "COD removal from landfill leachate using a high-performance and low-cost activated carbon synthesized from walnut shell", Chem. Eng. Commun., 205(9), pp. 1193~1206. (2019). https://doi.org/10.1080/00986445.2018.1441831
  23. Deng, Y., Jung, C., Zhao, R., Torrens, K. and Wu, L., "Adsorption of UV-quenching substances (UVQS) from landfill leachate with activated carbon", Chem. Eng. J., 350, pp. 739~746. (2018). https://doi.org/10.1016/j.cej.2018.04.056
  24. Hagemann, N., Schmidt, H., Kagi, L., Bohler, M., Sigmund, G., Maccagnan, A., McArdell, C. S. and Bucheli, T.D., "Wood-based activated biochar to eliminate organic micropollutants from biologically treated wastewater", Sci. Total Environ., 730, p. 138417. (2020). https://doi.org/10.1016/j.scitotenv.2020.138417
  25. Gonzalez-Cencerrado, A., Pallares Ranz, J., Lopez-Franco Jimenez, M. T.and Rebolledo Gajardo, B., "Assessing the environmental benefit of a new fertilizer based on activated biochar applied to cereal crops", Sci. Total Environ., 711, p. 134668. (2020). https://doi.org/10.1016/j.scitotenv.2019.134668
  26. Yao, Y., Gao, B., Chen, J. J. and Yang, L.Y., "Engineered biochar reclaiming phosphate from aqueous solutions: Mechanisms and potential application as a slow-release fertilizer", Environ. Sci. Technol., 47(15), pp. 8700~8708. (2013). https://doi.org/10.1021/es4012977
  27. Rajapaksha, A.U., Chen, S.S., Tsang, D.C., Zhang, M., Vithanage, M., Mandal, S., Gao, B., Bolan, N.S. and Ok, Y.S., "Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification", Chemosphere., 148, pp. 276~291. (2016). https://doi.org/10.1016/j.chemosphere.2016.01.043
  28. Yang, X., Liu, J., McGrouther, K., Huang, H., Lu, K., Guo, X., He, L., Lin, X., Che, L., Ye, Z. and Wang, H., "Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil", Environ. Sci. Pollut. Res. Int., 23(2), pp. 974~984. (2016). https://doi.org/10.1007/s11356-015-4233-0
  29. Shin, J., Choi, E., Jang, E.S., Hong, S.G., Lee, S. and Ravindran, B., "Adsorption characteristics of ammonium nitrogen and plant responses to biochar pellet", Sustainability., 10(5), pp. 1331~1342. (2018). https://doi.org/10.3390/su10051331
  30. Wu, Z., Zhang, X., Dong, Y., Li, B. and Xiong, Z., "Biochar amendment reduced greenhouse gas intensities in the rice-wheat rotation system: six-year field observation and meta-analysis", Agric. For. Metrol., 278, pp. 107625~107642. (2019a). https://doi.org/10.1016/j.agrformet.2019.107625
  31. Da D., Qibo F., Kim M.G., Min Y., Hailong W. and Weixiang W., "Effects of biochar amendment on rice growth and nitrogen retention in a waterlogged paddy field", J. Soils Sediments., 15(1), pp. 153~162. (2015) https://doi.org/10.1007/s11368-014-0984-3
  32. Kim, H., Yun, S., An, N. and Shin, J., "Effect of KOH concentrations and pyrolysis temperatures for enhancing NH4-N adsorption capacity of rice hull activated biochar", Korean J. Environ. Agric., 39(3), pp. 171-177. (2020a). https://doi.org/10.5338/KJEA.2020.39.3.20
  33. Shin, J., Park, D.G., Hong, S.G., Jeong, C., Kim, H. and Jeong, W., "Influence of activated biochar pellet fertilizer application on greenhouse gas emissions and carbon sequestration in rice (Oryza sativa L.) production", Environmental Pollution, 285, p. 117457. (2021). https://doi.org/10.1016/j.envpol.2021.117457
  34. Ro, K.S., Cantrell, K.B. and Hunt, P.G., "Hightemperature pyrolysis of blended animal manures for producing renewable energy and value-added biochar", Ind. Eng. Chem. Res., 49(20), pp. 10125~10131. (2010). https://doi.org/10.1021/ie101155m
  35. NAS, "Recommended application amounts of fertilizers for crop cultivation (eds)", National Institute of Agricultural Sciences, Rural Development Administration, p. 16. (2010).
  36. Mehlich, A., "Mehlich III soil test extractant: a modification of the Mehlich II extractant. Commun", Soil Sci. Plant Anal., 15(2), pp. 1409~1416. (1984). https://doi.org/10.1080/00103628409367568
  37. Dodds, W.K., Bouska, W. W., Eitzmann, J. L., Pilger, T. J., Pitts, K. L., Riley, A. J., Schloesser, T. J. and Thornbrugh, D.J., "Eutrophication of US freshwaters: Analysis of potential economic damages", Environ. Sci. Technol., 43(1), pp. 12~19. (2008). https://doi.org/10.1021/es801217q
  38. Almeelbi, T. and Bezbaruah, A., "Aqueous phosphate removal using nanoscale zero-valent iron", J. Nanopart. Res., 14, pp. 197~210. (2012).
  39. USEPA, "Ecological Restoration: A Tool to Manage Stream Quality", Report EPA 841-F-95-007, US EPA, Washington, DC, USA. (1995).
  40. Ma, J. F. and Yamaji, N., "Silicon uptake and accumulation in higher plants", Trends Plant Sci., 11(8), pp. 392~397. (2006). https://doi.org/10.1016/j.tplants.2006.06.007
  41. Guntzer, F., Keller, C. and Meunier, J. D., "Benefits of plant silicon for crops: a review", Agron. Sustain. Dev., 32(1), pp. 201~213. (2012). https://doi.org/10.1007/s13593-011-0039-8
  42. Epstein, E., "Silicon: its manifold roles in plants", Ann. Appl. Biol., 155(2), pp. 155~160. (2009). https://doi.org/10.1111/j.1744-7348.2009.00343.x
  43. Shin, J., Jang, E., Park, S., Ravindran, B. and Chang, S., "Agro-environmental impacts, carbon sequestration, and profit analysis of blended biochar pellet application in the paddy soil-water system", J. Environ. Manage., 244, pp. 92~98. (2019). https://doi.org/10.1016/j.jenvman.2019.04.099
  44. Masto, R. E., Ansari, J., George, V. A. and Ram, L. C., "Co-application of biochar and lignite fly ash on soil nutrients and biological parameters at different crop growth stages of Zea mays", Ecol. Eng., 58, pp. 314~322. (2013). https://doi.org/10.1016/j.ecoleng.2013.07.011
  45. Dari, B., Nair, V. D., Harris, W. G., Nair, P. K. R., Sollenberger, L. and Rao, M., "Relative influence of soil vs. biochar properties on soil phosphorus retention", Geoderma., 280, pp. 82~87. (2016). https://doi.org/10.1016/j.geoderma.2016.06.018