DOI QR코드

DOI QR Code

Efficient elastic stress analysis method for piping system with wall-thinning and reinforcement

  • Received : 2021.05.18
  • Accepted : 2021.08.21
  • Published : 2022.02.25

Abstract

A piping system stress analysis need to be re-performed for structural integrity assessment after reinforcement of a pipe with significant wall thinning. For efficient stress analysis, a one-dimensional beam element for the wall-thinned pipe with reinforcement needs to be developed. To develop the beam element, this work presents analytical equations for elastic stiffness of the wall-thinned pipe with reinforcement are analytically derived for axial tension, bending and torsion. Comparison with finite element (FE) analysis results using detailed three-dimensional solid models for wall-thinned pipe with reinforcement shows good agreement. Implementation of the proposed solutions into commercial FE programs is explained.

Keywords

Acknowledgement

This work was supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (No. 20206510100030, Development of Repair Technology for Class 2, 3 Large Bore Piping in Operating Nuclear Power Plant).

References

  1. ASME Boiler and Pressure Vessel Code, Section III, Rules for Construction of Nuclear Power Plant Components, American Society of Mechanical Engineers, 2015.
  2. J.J. Duffy, M.R. Mahoney, K.M. Steel, Influence of thermoplastic properties on coking pressure generation: Part 1 - a study of single coals of various rank, Fuel 89 (7) (2010) 1590-1599, https://doi.org/10.1016/j.fuel.2009.08.031.
  3. J.W. Kim, C.Y. Park, An experimental study on the evaluation of failure behavior of pipe with local wall thinning, in: Am. Soc. Mech. Eng. Press. Vessel. Pip. Div. PVP, 2002, pp. 9-15, https://doi.org/10.1115/PVP2002-1258, 46512.
  4. J.W. Kim, C.Y. Park, Effect of length of thinning area on the failure behavior of carbon steel pipe containing a defect of wall thinning, Nucl. Eng. Des. 220 (3) (2003) 274-284, https://doi.org/10.1016/S0029-5493(02)00386-2.
  5. ASME Section XI Code Case N-597-2, Requirement for Analytical Evaluation of Pipe Wall Thinning, Am. Soc. of Mech. Eng., New York, USA, 2003.
  6. J.W. Kim, S.H. Lee, C.Y. Park, Experimental evaluation of the effect of local wall thinning on the failure pressure of elbows, Nucl. Eng. Des. 239 (12) (2009) 2737-2746, https://doi.org/10.1016/j.nucengdes.2009.10.003.
  7. J.W. Kim, Y.S. Na, S.H. Lee, Experimental evaluation of the bending load effect on the failure pressure of wall-thinned elbows, J. Press. Vessel Technol. Trans. ASME. 131 (3) (2009), 031210, https://doi.org/10.1115/1.3122032.
  8. J.W. Kim, M.S. Yoon, C.Y. Park, The effect of load-controlled bending load on the failure pressure of wall-thinned pipe elbows, Nucl. Eng. Des. 265 (2013) 174-183, https://doi.org/10.1016/j.nucengdes.2013.07.027.
  9. M. Kamaya, T. Suzuki, T. Meshii, Normalizing the influence of flaw length on failure pressure of straight pipe with wall-thinning, Nucl. Eng. Des. 238 (1) (2008) 8-15, https://doi.org/10.1016/j.nucengdes.2007.06.006.
  10. M. Kamaya, T. Suzuki, T. Meshii, Failure pressure of straight pipe with wall thinning under internal pressure, Int. J. Pres. Ves. Pip. 85 (9) (2008) 628-634, https://doi.org/10.1016/j.ijpvp.2007.11.005.
  11. D.J. Shim, J.B. Choi, Y.J. Kim, Failure strength assessment of pipes with local wall thinning under combined loading based on finite element analyses, J. Press. Vessel Technol. Trans. ASME. 126 (2) (2004) 179-183, https://doi.org/10.1115/1.1687382.
  12. D.J. Shim, Y.J. Kim, Y.J. Kim, Reference stress based approach to predict failure strength of pipes with local wall thinning under combined loading, J. Press. Vessel Technol. Trans. ASME. 127 (1) (2005) 76-83, https://doi.org/10.1115/1.1849228.
  13. Y.J. Kim, D.J. Shim, H. Lim, Y.J. Kim, Reference stress based approach to predict failure strength of pipes with local wall thinning under single loading, J. Press. Vessel Technol. Trans. ASME. 126 (2) (2004) 194-201, https://doi.org/10.1115/1.1687379.
  14. ASME Section XI Code Case N-786-3, Alternative Requirements for Sleeve Reinforcement of Class 2 and 3 Moderate-Energy Carbon Steel Piping for Raw Water Service, Am. Soc. of Mech. Eng., New York, USA, 2017.
  15. ASME Section XI Code Case N-789-3, Alternative Requirements for Pad Reinforcement of Class 2 and 3 Moderate-Energy Carbon Steel Piping, Am. Soc. of Mech. Eng., New York, USA, 2017.
  16. M. Elchalakani, A. Karrech, H. Basarir, M.F. Hassanein, S. Fawzia, CFRP strengthening and rehabilitation of corroded steel pipelines under direct indentation, Thin-Walled Struct. 119 (2017) 510-521, https://doi.org/10.1016/j.tws.2017.06.013.
  17. E. Alizadeh, M. Dehestani, Analytical and numerical fracture analysis of pressure vessel containing wall crack and reinforcement with CFRP laminates, Thin-Walled Struct. 127 (2018) 210-220, https://doi.org/10.1016/j.tws.2018.02.009.
  18. K.S. Lim, S.N.A. Azraai, N. Yahaya, N. Md Noor, L. Zardasti, J.H.J. Kim, Behaviour of steel pipelines with composite repairs analysed using experimental and numerical approaches, Thin-Walled Struct. 139 (2019) 321-333, https://doi.org/10.1016/j.tws.2019.03.023.
  19. M. Xia, K. Kemmochi, H. Takayanagi, Analysis of filament-wound fiber-reinforced sandwich pipe under combined internal pressure and thermomechanical loading, Compos. Struct. 51 (3) (2001) 273-283, https://doi.org/10.1016/S0263-8223(00)00137-9.
  20. A. Ravikiran, P.N. Dubey, M.K. Agrawal, G.R. Reddy, K.K. Vaze, Evaluation of inelastic seismic response of a piping system using a modified iterative response spectrum method, J. Press. Vessel Technol. Trans. ASME. 135 (4) (2013), 041801, https://doi.org/10.1115/1.4023730.
  21. A. Ravikiran, P.N. Dubey, M.K. Agrawal, G.R. Reddy, R.K. Singh, K.K. Vaze, Experimental and numerical studies of ratcheting in a pressurized piping system under seismic load, J. Press. Vessel Technol. Trans. ASME. 137 (3) (2015), 031011, https://doi.org/10.1115/1.4028619.
  22. A. Ravi Kiran, G.R. Reddy, M.K. Agrawal, Seismic fragility analysis of pressurized piping systems considering ratcheting: a case study, Int. J. Pres. Ves. Pip. 169 (2019) 26-36, https://doi.org/10.1016/j.ijpvp.2018.11.013.
  23. A. Ravi Kiran, G.R. Reddy, M.K. Agrawal, M. Raj, S.D. Sajish, Ratcheting based seismic performance assessment of a pressurized piping system: experiments and analysis, Int. J. Pres. Ves. Pip. 177 (2019), 103995, https://doi.org/10.1016/j.ijpvp.2019.103995.
  24. I. Skarakis, G. Chatzopoulou, S.A. Karamanos, N.G. Tsouvalis, A.E. Pournara, CFRP reinforcement and repair of steel pipe elbows subjected to severe cyclic loading, J. Press. Vessel Technol. Trans. ASME. 139 (5) (2017), 051403, https://doi.org/10.1115/1.4037198.
  25. G. Chatzopoulou, I. Skarakis, S.A. Karamanos, N.G. Tsouvalis, A.E. Pournara, Numerical simulation of CFRP reinforced steel pipe elbows subjected to cyclic loading, in: Am. Soc. Mech. Eng. Press. Vessel. Pip. Div. PVP, 2016, 50398, https://doi.org/10.1115/PVP2016-63853. V003T03A027.
  26. L. Mazurkiewicz, M. Tomaszewski, J. Malachowski, K. Sybilski, M. Chebakov, M. Witek, P. Yukhymets, R. Dmitrienko, Experimental and numerical study of steel pipe with part-wall defect reinforced with fibre glass sleeve, Int. J. Pres. Ves. Pip. 149 (2017) 108-119, https://doi.org/10.1016/j.ijpvp.2016.12.008.
  27. S. Rahman, Net-section-collapse analysis of circumferentially cracked cylinders - Part II: idealized cracks and closed-form solutions, Eng. Fract. Mech. 61 (1998) 213-230, https://doi.org/10.1016/S0013-7944(98)00061-7.
  28. Y.J. Kim, D.J. Shim, K. Nikbin, Y.J. Kim, S.S. Hwang, J.S. Kim, Finite element based plastic limit loads for cylinders with part-through surface cracks under combined loading, Int. J. Pres. Ves. Pip. 80 (7-8) (2003) 527-540, https://doi.org/10.1016/S0308-0161(03)00106-6.
  29. D.J. Chang, J.M. Lee, H.S. Nam, N.S. Huh, Y.J. Kim, H.D. Kweon, J.S. Kim, Effect of damage evaluation method and cyclic hardening models on strain-based fatigue assessment to a piping system under seismic loads, J. Mech. Sci. Technol. 34 (7) (2020) 2833-2844, https://doi.org/10.1007/s12206-020-0616-3.