DOI QR코드

DOI QR Code

A comprehensive study of the effects of long-term thermal aging on the fracture resistance of cast austenitic stainless steels

  • Collins, David A. (Materials Science and Technology Division, Oak Ridge National Laboratory) ;
  • Carter, Emily L. (Earth Systems Science Division, Pacific Northwest National Laboratory) ;
  • Lach, Timothy G. (Materials Science and Technology Division, Oak Ridge National Laboratory) ;
  • Byun, Thak Sang (Materials Science and Technology Division, Oak Ridge National Laboratory)
  • Received : 2021.05.04
  • Accepted : 2021.08.17
  • Published : 2022.02.25

Abstract

Loss of fracture resistance due to thermal aging degradation is a potential limiting factor affecting the long-term (80+ year) viability of nuclear reactors. To evaluate the effects of decades of aging in a practical time frame, accelerated aging must be employed prior to mechanical characterization. In this study, a variety of chemically and microstructurally diverse austenitic stainless steels were aged between 0 and 30,000 h at 290-400 ℃ to simulate 0-80+ years of operation. Over 600 static fracture tests were carried out between room temperature and 400 ℃. The results presented include selected J-R curves of each material as well as K0.2mm fracture toughness values mapped against aging condition and ferrite content in order to display any trends related to those variables. Results regarding differences in processing, optimal ferrite content under light aging, and the relationship between test temperature and Mo content were observed. Overall, it was found that both the ferrite volume fraction and molybdenum content had significant effects on thermal degradation susceptibility. It was determined that materials with >25 vol% ferrite are unlikely to be viable for 80 years, particularly if they have high Mo contents (>2 wt%), while materials less than 15 vol% ferrite are viable regardless of Mo content.

Keywords

Acknowledgement

This manuscript has been authored in part by UT-Battelle LLC under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

References

  1. J.T. Busby, P.G. Oberson, C.E. Carpenter, M. Srinivasan, Expanded materials degradation assessment (EMDA)-Vol. 2: aging of core internals and piping systems, Office of Nuclear Regulatory Research/United States Department of Energy, Washington D.C., 2014.
  2. T.G. Lach, A. Devaraj, K.J. Leonard, T.S. Byun, Co-dependent microstructural evolution pathways in metastable d-ferrite in cast austenitic stainless steels during thermal aging, J. Nucl. Mater. 510 (2018) 382-395. https://doi.org/10.1016/j.jnucmat.2018.08.038
  3. S.C. Schwarm, S. Mburu, R.P. Kolli, D.E. Perea, S. Ankem, Effects of long-term thermal aging on bulk and local mechanical behavior of ferritic-austenitic duplex stainless steels, Mater. Sci. Eng., A 720 (2018) 130-139.
  4. S. Mburu, R.P. Kolli, D.E. Perea, S.C. Schwarm, A. Eaton, J. Liu, S. Patel, J. Bartrand, S. Ankem, Effect of aging temperature on phase decomposition and mechanical properties in cast duplex stainless steels, Mater. Sci. Eng., A 690 (2017) 365-377.
  5. O.K. Chopra, Effects of thermal aging and neutron irradiation on crack growth rate and fracture toughness of cast stainless steels and austenitic stainless steel Welds, Office of Nuclear Regulatory Research/United States Department of Energy, Washington D.C., 2014.
  6. K. Chandra, R. Singhal, V. Kain, V.S. Raja, Low temperature embrittlement of duplex stainless steel: correlation between mechanical and electrochemical behavior, Mater. Sci. Eng. 527 (2010) 3904-3912. https://doi.org/10.1016/j.msea.2010.02.069
  7. S. Li, Y. Wang, H. Wang, C. Xin, X. Wang, Effects of long-term thermal aging on the stress corrosion cracking behavior of cast austenitic stainless steels in simulated PWR primary water, J. Nucl. Mater. 469 (2016) 262-268. https://doi.org/10.1016/j.jnucmat.2015.11.043
  8. Y. Chen, B. Alexandreanu, W.-Y. Chen, K. Natesan, Z. Li, Y. Yang, A.S. Rao, Cracking behavior of thermally aged and irradiated CF-8 cast austenitic stainless steel, J. Nucl. Mater. 466 (2015) 560-568. https://doi.org/10.1016/j.jnucmat.2015.08.047
  9. S.L. Li, H.L. Zhang, Y.L. Wang, S.X. Li, K. Zheng, F.W.X.T. Xue, Annealing induced recovery of long-term thermal aging embrittlement in a duplex stainless steel, Mater. Sci. Eng., A 564 (2013) 85-91.
  10. Z. Li, W.-Y. Lo, Y. Chen, J. Pakarinem, Y. Wu, T. Allen, Y. Yang, Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel, J. Nucl. Mater. 466 (2015) 201-207. https://doi.org/10.1016/j.jnucmat.2015.08.006
  11. Z.-X. Wang, F. Xue, J.-W. Jiang, W.-X. Ti, W.-W. Yu, Experimental evaluation of temper aging embrittlement of cast austenitic stainless steel from PWR, Eng. Fail. Anal. 18 (2011) 403-410. https://doi.org/10.1016/j.engfailanal.2010.09.022
  12. T. Yamada, S. Okano, H. Kuwano, Mechanical property and microstructural change by thermal aging of SCS14A cast duplex stainless steel, J. Nucl. Mater. 350 (2006) 47-55. https://doi.org/10.1016/j.jnucmat.2005.11.008
  13. Y.H. Yao, J.F. Wei, Z.P. Wang, Effect of long-term thermal aging on the mechanical properties of casting duplex stainless steels, Mater. Sci. Eng. 551 (2012) 116-121. https://doi.org/10.1016/j.msea.2012.04.105
  14. T.S. Byun, D.A. Collins, T.G. Lach, E.L. Barkley, Toughness Degradation in Cast Stainless Steels during Long-Term Thermal Aging, Pacific Northwest National Laboratory, Richland, 2019.
  15. M.H. Bina, Study on formation and morphology of sigma-phase in continuous annealing furnace roller, Eng. Fail. Anal. 34 (2013) 174-180. https://doi.org/10.1016/j.engfailanal.2013.07.034
  16. T.S. Byun, T.G. Lach, Mechanical Properties of 304L and 316L Austenitic Stainless Steels after Thermal Aging for 1500 Hours, Pacific Northwest National Laboratory, Richland, 2016.
  17. O.K. Chopra, A. Sather, Initial Assessment of the Mechanisms and Significance of Low-Temperature Embrittlement of Cast Stainless Steels in LWR Systems, Argonne National Laboratory, Argonne, 1990.
  18. T. S. Byun, D. A. Collins, T. G. Lach and E. L. Carter, "Degradation of impact toughness in cast stainless steels during long-term thermal aging," J. Nucl. Mater., vol. 542, 2020.
  19. J. Emo, C. Pareige, S. Saillet, C. Domain, P. Pareige, Kinetics of secondary phase precipitation during spinodal decomposition in duplex stainless steels: a kinetic Monte Carlo model-Comparison with atom probe tomography experiments, J. Nucl. Mater. 451 (2014) 361-365. https://doi.org/10.1016/j.jnucmat.2014.04.025
  20. M. Wang, L. Chen, X. Liu, X. Ma, Influence of thermal aging on the SCC susceptibility of wrought 316LN stainless steel in a high temperature water environment, Corrosion Sci. 81 (2014) 117-124. https://doi.org/10.1016/j.corsci.2013.12.011
  21. A. E1820, Standard Test Method for Measurement of Fracture Toughness, ASTM International, West Conshohocken, 2008.
  22. R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, fourth ed., John Wiley & Sons, Inc., Hoboken, 1996.
  23. T.S. Byun, S.A. Maloy, J.H. Yoon, Small specimen reuse technique to evaluate fracture toughness of high dose HT9 steel, Small Specimen Test Techniques 6 (2014) 1-22.
  24. S.S.M. Tavares, M.R. da Silva, J.M. Pardal, H.F.G. Abreu, A.M. Gomes, Microstructural changes produced by plastic deformation in the UNS S31803 duplex stainless steel, J. Mater. Process. Technol. 180 (2006) 318-322. https://doi.org/10.1016/j.jmatprotec.2006.07.008
  25. S.S.M. Tavares, J.M. Pardal, M.J. Gomes da Silva, H.F.G. Abreu, M.R. da Silva, Deformation induced martensitic transformation in a 201 modified austenitic stainless steel, Mater. Char. 60 (2009) 907-911. https://doi.org/10.1016/j.matchar.2009.02.001
  26. M. Shirdel, H. Mirzadeh, M.H. Parsa, Nano/ultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: mechanisms, microstructures, mechanical properties, and TRIP effect, Mater. Char. 103 (2015) 150-161. https://doi.org/10.1016/j.matchar.2015.03.031
  27. K.H. Lo, C.H. Shek, J.K.L. Lai, Recent developments in stainless steels, Mater. Sci. Eng. R 65 (2009) 39-104. https://doi.org/10.1016/j.mser.2009.03.001
  28. T.-H. Lee, H.-Y. Ha, B. Hwang, S.-J. Kim, E. Shin, Effect of carbon fraction on stacking fault energy of austenitic stainless steels, Metall. Mater. Trans. 43 (2012) 4455-4459. https://doi.org/10.1007/s11661-012-1423-y
  29. O.K. Chopra, Estimation of Fracture Toughness of Cast Stainless Steels during Thermal Aging in LWR Systems: Rev. 2, United States Nuclear Regulatory Commission, Washington D.C., 2016.
  30. T.G. Lach, T.S. Byun, K.J. Leonard, Mechanical property degradation and microstructural evolution of cast austenitic stainless steels under short-term thermal aging, J. Nucl. Mater. 497 (2017) 139-153. https://doi.org/10.1016/j.jnucmat.2017.07.059
  31. C. Pareige, J. Emo, S. Saillet, C. Domain, P. Pareige, Kinetics of G-phase precipitation and spinodal decomposition in very long aged ferrite of a Mo-free duplex stainless steel, J. Nucl. Mater. 465 (2015) 383-389. https://doi.org/10.1016/j.jnucmat.2015.06.017
  32. S.L. Li, Y.L. Wang, H.L. Zhang, S.X. Li, K. Zheng, F. Xue, X.T. Wang, Microstructure evolution and impact fracture behaviors of Z3CN20-09M stainless steels after long-term thermal aging, J. Nucl. Mater. 433 (2013) 41-49. https://doi.org/10.1016/j.jnucmat.2012.09.004
  33. S. Li, Y. Wang, X. Wang, Effects of Ni content on the microstructures, mechanical properties and thermal aging embrittlement behaviors of Fe-20Cr-xNi alloys, Mater. Sci. Eng., A 639 (2015) 640-646.
  34. S. Li, Y. Wang, S. Li, H. Zhang, F. Xue, X. Wang, Microstructures and mechanical properties of cast austenite stainless steels after long-term thermal aging at low temperature, Mater. Des. 50 (2013) 886-892. https://doi.org/10.1016/j.matdes.2013.02.061
  35. T.S. Byun, Y. Yang, N.R. Overman, J.T. Busby, Thermal aging phenomena in cast duplex stainless steels, JOM 68 (2) (2016) 507-516. https://doi.org/10.1007/s11837-015-1709-9
  36. K. Mumtaz, S. Takahashi, J. Echigoya, L. Zhang, Y. Kamada, M. Sato, Temperature dependence of martensitic transformation in austenitic stainless steel, J. Mater. Sci. Lett. 22 (2003) 423-427. https://doi.org/10.1023/A:1022999309138
  37. V. Seetharaman, R. Krishnan, Influence of the martensitic transformation on the deformation behavior of an AISI 316 stainless steel at low temperatures, J. Mater. Sci. 16 (1981) 523-530. https://doi.org/10.1007/BF00738646
  38. P.L. Manganon, G. Thomas, The martensite phases in 304 stainless steel, Metallurgical Transactions 1 (1970) 1577-1586. https://doi.org/10.1007/BF02642003
  39. C.Y. Kung, J.J. Rayment, An examination of the validity of existing empirical formulae for the calculation of Ms temperature, Metallurgical Transactions A 13A (1982) 328-331.
  40. Q.X. Dai, X.N. Cheng, Y.T. Zhao, X.M. Luo, Z.Z. Yuan, Design of martensite transformation temperature by calculation for austentitic steels, Mater. Char. 52 (2004) 349-354. https://doi.org/10.1016/j.matchar.2004.06.008
  41. P.J. Brofman, G.S. Ansell, On the effect of carbon on the stacking fault energy of austenitic stainless steels, Metallurgical Transactions A 9A (1978) 879-880.
  42. V. Gavriljuk, Y. Petrov, B. Shanina, Effect of nitrogen on the electron structure and stacking fault energy in austenitic steels, Scripta Mater. 55 (2006) 537-540. https://doi.org/10.1016/j.scriptamat.2006.05.025
  43. J. Banas, A. Mazurkiewicz, The effect of copper on passivity and corrosion behavior of ferritic and ferritic-austenitic stainless steels, Mater. Sci. Eng. 277 (2000) 183-191. https://doi.org/10.1016/S0921-5093(99)00530-4
  44. J.C. Li, M. Zhao, Q. Jiang, Alloy design of FeMnSiCrNi shape-Memory alloys related to stacking-fault energy, Metall. Mater. Trans. 31 (2000) 581-584. https://doi.org/10.1007/s11661-000-0001-x
  45. S. Ganesh Sundara Raman, K.A. Padmanabhan, Tensile deformation-induced martensitic transformation in AISI 304LN austenitic stainless steel, J. Mater. Sci. Lett. 13 (1994) 389-392. https://doi.org/10.1007/BF00420808
  46. T. Sourmail, Precipitation in creep resistant austenitic stainless steels, Mater. Sci. Technol. 17 (2001) 1-14. https://doi.org/10.1179/026708301101508972
  47. J.M. Vitek, S.A. David, D.J. Alexander, J.R. Keiser, Low temperature aging behavior of type 308 stainless steel weld metal, Acta Metall. Mater. 39 (4) (1991) 503-516. https://doi.org/10.1016/0956-7151(91)90118-K
  48. S.A. David, J.M. Vitek, D.J. Alexander, Embrittlement of austenitic stainless steel Welds, J. Nondestr. Eval. 15 (3-4) (1996) 129-136. https://doi.org/10.1007/BF00732040
  49. C.I. Grimes, Staff Evaluation of License Renewal No. 98-0030: Thermal Aging Embrittlement of Cast Austenitic Stainless Steel Components, Nuclear Energy Institute, Washinton D. C., 2000.
  50. L. Mraz, F. Matsuda, Y. Kikuchi, N. Sakamoto, S. Kawaguchi, Temper embrittlement of cast duplex stainless steels after long-term aging, Trans. JWRI 23 (2) (1994) 213-222.
  51. T.S. Byun, Y. Yang, N.R. Overman, F. Yu, Effects of Thermal Aging in Cast Stainless Steels, Oak Ridge National Laboratory, Oak Ridge, 2015.
  52. Q. Zhang, S. Niverty, A.S.S. Singaravelu, J.J. Williams, E. Guo, T. Jing, N. Chawla, Microstructure and micropore formation in a centrifugally-cast duplex stainless steel via X-ray microtomography, Mater. Char. 148 (2019) 52-62. https://doi.org/10.1016/j.matchar.2018.12.009
  53. S. Li, Y. Wang, X. Wang, Effects of ferrite content on the mechanical properties of thermal aged duplex stainless steels, Mater. Sci. Eng., A 625 (2015) 186-193.
  54. F. Xue, Z.-X. Wang, G. Shu, W. Yu, H.-J. Shi, W. Ti, Thermal aging effect on Z3CN20.09M cast duplex stainless steel, Nucl. Eng. Des. 239 (2009) 2217-2223. https://doi.org/10.1016/j.nucengdes.2009.06.009
  55. H. Wen-Tai, R.W.K. Honeycombe, Structure of centrifugally cast austenitic stainless steels: Part 1 HK 40 as cast and after creep between 750 and 100℃, Mater. Sci. Technol. 1 (1985) 385-389. https://doi.org/10.1179/026708385790124756
  56. D.A. Collins, E.L. Barkley, T.G. Lach, T.S. Byun, Effects of thermal aging on the fracture toughness of cast stainless steel CF8, Int. J. Pres. Ves. Pip. 173 (2019) 45-54. https://doi.org/10.1016/j.ijpvp.2019.04.017
  57. T. Takeuchi, J. Kameda, Y. Nagai, T. Toyama, Y. Matsukawa, Y. Nishiyama, K. Onizawa, Microstructural changes of a thermally aged stainless steel submerged arc weld overlay cladding of nuclear reactor pressure vessels, J. Nucl. Mater. 425 (2012) 60-64. https://doi.org/10.1016/j.jnucmat.2011.12.004