DOI QR코드

DOI QR Code

딥러닝 기반 이용한 공동주택현관문의 출입자 식별 시스템 설계

Design of an Visitor Identification system for the Front Door of an Apartment using Deep learning

  • 이민혜 (원광대학교 교양교육원) ;
  • 문형진 (성결대학교 정보통신공학과)
  • Lee, Min-Hye (Center for General Education, Wonkwang University) ;
  • Mun, Hyung-Jin (Dept. of Information & Communication Engineering, Sungkyul University)
  • 투고 : 2022.01.25
  • 심사 : 2022.04.20
  • 발행 : 2022.04.28

초록

COVID-19와 같은 전염병의 확산 방지로 인해 접촉에 대한 두려움이 존재한다. 아파트의 공동주택현관문은 거주민이 현관문에 부착된 도어락의 비밀번호를 입력하거나 거주민의 허락을 득한 경우에 출입이 가능하다. 출입을 위해서는 공동현관문의 도어락에 동호수와 비밀번호를 직접 입력해야 하는 불편함이 존재한다. 또한, COVID-19로 인해 비접촉 출입 요구가 있다. 최근에는 정보통신기술 및 인공지능의 발달함에 따라 안면인식 및 음성인식 기술을 이용하여 쉽게 사용자를 식별할 수 있다. 제안 기법은 공동현관문에 부착된 CCTV 나 카메라를 통해 방문자의 얼굴을 감지하고, 안면을 인식하여 등록된 거주민으로 식별한 후, 거주자의 등록된 정보를 기반으로 서버에서 엘리베이터와 연동하여 비접촉으로도 운행이 가능하다. 특히, 모자나 마스크 등으로 안면인식에 실패할 경우 음성으로 화자 식별하거나 음성 메시지를 기반으로 방문자의 추가적인 인증을 수행하여 공동주택현관문 출입 시 비접촉 기능 및 지문정보를 남기지 않고 출입의 불편함이 없이 전염성 확산을 차단할 수 있다.

Fear of contact exists due to the prevention of the spread of infectious diseases such as COVID-19. When using the common entrance door of an apartment, access is possible only if the resident enters a password or obtains the resident's permission. There is the inconvenience of having to manually enter the number and password for the common entrance door to enter. Also, contactless entry is required due to COVID-19. Due to the development of ICT, users can be easily identified through the development of face recognition and voice recognition technology. The proposed method detects a visitor's face through a CCTV or camera attached to the common entrance door, recognizes the face, and identifies it as a registered resident. Then, based on the registered information of the resident, it is possible to operate without contact by interworking with the elevator on the server. In particular, if face recognition fails with a hat or mask, the visitor is identified by voice or additional authentication of the visitor is performed based on the voice message. It is possible to block the spread of contagiousness without leaving any contactless function and fingerprint information when entering and exiting the front door of an apartment house, and without the inconvenience of access.

키워드

참고문헌

  1. S. H. Lee. (2021). Design and Implementation of Visitor Access Control System using Deep learning Face Recognition. Journal of digital convergence, 19(2), 245-251. DOI : 10.14400/JDC.2021.19.2.245
  2. S. H. Lee. (2021). Face Recognition Using Automatic Face Enrollment and Update for Access Control in Apartment Building Entrance. Journal of the Korea Institute of Information and Communication Engineering, 25(9), 1152-1157. https://doi.org/10.6109/JKIICE.2021.25.9.1152
  3. T. K. Kim & Y. G. Kwon, J. E. Jeong, G. G. Jeon (2017). A Smart doorlock with recognition of facial and speaker. Proceedings of the Korea Information Processing Society Conference, 569-570. DOI : 10.3745/PKIPS.y2017m11a.569
  4. W. J. Hwang. (2017). Deep Learning-based Face Detection. Landmark Detection, and Face Recognition Technology Research Trends. Broadcasting and Media Magazine, 22(4), 41-49.
  5. M. H. Lee, & H. J. Mun. (2020). Comparison Analysis and Case Study for Deep Learning-based Object Detection Algorithm. International Journal of Advanced Science and Convergence, 2(4), 7-16. DOI : 10.22662/IJASC.2020.2.4.007
  6. D. J. Kim, S. H. Lee, & M. K. Sohn.(2016). Facial Expression Recognition Using SIFT Descriptor. KIPS transactions on software and data engineering, 5(2), 89-94. DOI : 10.3745/KTSDE.2016.5.2.89
  7. D. W. Lee, S. H. Lee, H. H. Han & G. S. Chae. (2019). Improved Skin Color Extraction Based on Flood Fill for Face Detection. Journal of the Korea Convergence Society, 10(6), 7-14. DOI : 10.15207/JKCS.2019.10.6.007
  8. Niko. (Mar 19, 2019). Github, 81 Facial Landmarks Shape Predictor. https://github.com/codeniko/shape_predictor_81_face_landmarks
  9. S. G. Jang, H. M. Kim,, B. G. Seo & J. I. Park. (2021). 3D photorealistic avatar creation technology for immersive remote meeting. Broadcasting and Media Magazine, 26(3), 50-58.
  10. S. Y. Min, K. H. Lee, D.S. Lee & D. Y. Ryu. (2020). A Study on Quantitative Evaluation Method for STT Engine Accuracy based on Korean Characteristics. Journal of the Korea Academia-Industrial cooperation Society, 21(7), 699-707. DOI : 10.5762/KAIS.2020.21.7.699
  11. M. Kim, & J. Moon. (2019). Speaker Verification Model Using Short-Time Fourier Transform and Recurrent Neural Network. Journal of the Korea Institute of Information Security & Cryptology, 29(6), 1393-1401. DOI : 10.13089/JKIISC.2019.29.6.1393
  12. S. Moon, K. Min, J. Seo, S. Lee & Y. Ko. (2020). Development of the Smart Doorlock with Triple Security Function. The Journal of the Korea Institute of Electronic Communication Sciences, 15(1), 115-124. DOI : 10.13067/JKIECS.2020.15.1.115
  13. W. L. Kim, H. W. Ham, S. U. Yun, & W. J. Lee (2021). A Design and Implementation of Speech Recognition and Synthetic Application for Hearing-Impairment. Journal of the Korea Society of Computer and Information, 26(12), 105-110. DOI : 10.9708/JKSCI.2021.26.12.105
  14. H. J. Mun & G. H. Kim (2019). A Survey on Deep Learning based Face Recognition for User Authentication. Journal of Industrial Convergence, 17(3), 23-29. DOI : 10.22678/JIC.2019.17.3.023