DOI QR코드

DOI QR Code

LNG 저장탱크용 환경 센서 모듈을 이용한 유무선 통신 모듈 개발

Development of Wire/Wireless Communication Modules using Environmental Sensor Modules for LNG Storage Tanks

  • 박병진 (동명대학교 전기전자정보통신공학과) ;
  • 김민성 (동명대학교 AI학부)
  • Park, Byong Jin (Electronics & Information Communications Engineering, TongMyong University) ;
  • Kim, Min Sung (College of Artificial Intelligence Convergence, TongMyong University)
  • 투고 : 2022.04.07
  • 심사 : 2022.04.20
  • 발행 : 2022.04.28

초록

LNG 저장 작업 중 기계결함, 부주의 등으로 인해 사고가 꾸준히 발생하고 있다. 이전 연구에서는 위험을 미리 감지하는 압력, 온도, 가스 농도, 플로우 측정이 가능한 환경 센서 모듈을 개발하고 누출된 가스량에 따른 응답속도를 측정하였었다. 본 논문에서는 환경 센서 모듈이 측정한 데이터를 SPI, UART, LTE의 유무선 네트워크와 연결된 임베디드 기기들에 안전하게 전송해주는 유무선 통신 모듈의 개발을 제안한다. 먼저 환경 센서와 연동 가능한 데이터 통신 모듈을 설계한다. Local Control Part의 각 장치간 프로토콜과 Local Control Part와 Remote Control Part의 유무선 프로토콜을 설계한다. 이더넷, WiFi, LTE 통신 모듈을 설계하고 임베디드 제어기와 연동 가능한 UART, SPI 채널을 설계하였다. 그 결과, 각 임베디드 기기가 유선, 무선 동시 통신하면서 환경 센서 모듈이 측정한 데이터를 전송함을 UI(User Interface)를 통해 확인할 수 있었다.

Accidents are steadily occurring due to machine defects and carelessness during LNG storage operations. In previous studies, an environmental sensor module capable of measuring pressure, temperature, gas concentration, and flow to detect danger in advance was developed and the response speed according to the amount of leaked gas was measured. This paper proposes the development of a wired and wireless communication module that transmits data measured by the environmental sensor module to embedded devices connected to wired and wireless networks of SPI, UART, and LTE. First, a data communication module capable of interworking with an environmental sensor is designed. Design a protocol between devices in the Local Control Part and wired and wireless protocols in the Local Control Part and Remote Control Part. Ethernet, WiFi, and LTE communication modules were designed, and UART and SPI channels that can be linked with embedded controllers were designed. As a result, it was confirmed through a UI (User Interface) that each embedded device transmits data measured by the environmental sensor module while simultaneously communicating on a wired and wireless basis.

키워드

참고문헌

  1. Y. S. Park. (2019. July). Global LNG supply and demand "Neul Jump" by 2023: BNEF announces global LNG forecast report_surge in LNG supply this year... Demand will increase from 2022. Electric Power, 13, 52-53.
  2. S. L. Lee, J. W. Lee & G. WH. Kim. (2019). Forecasting the Medium Term Demand of LNG for Power Generation under the Energy Transition Policy in South Korea. Journal of Climate Change Research, 10(1), 47-54. DOI : 10.15531/ksccr.2019.10.1.47
  3. S. M. Lee & N. H. Kim. (2019). Failure Mode and Effects Analysis of LNG Bunkering Monitoring System. Proceedings of the Korean Institute of Information and Commucation Sciences Conference, 23(2), 19-21.
  4. S. K. Yun. (2015). Thermal Analysis of LNG Storage Tank for LNG Bunkering System. Journal of Advanced Marine Engineering and Technology, 39(9), 876-880. https://doi.org/10.5916/jkosme.2015.39.9.876
  5. A. Lee, S. O. Song, & J. H. Yu. (2021). The Study of Fiber Optic Cable for LNG Tank Leakage Monitoring. Proceeding of Conference of The Korean Institute of Gas, 149-149.
  6. S. Kumar, H. T. Kwon, K. H. Choi, Wonsub. Lim, J. H. Cho, K. J. Tak, I. Moon et al. (2011). LNG: An Eco-friendly Cryogenic Fuel for Sustainable Development. Applied Energy, 88(12), 4264-4273. https://doi.org/10.1016/j.apenergy.2011.06.035
  7. HSE. (2012). Failure Rate and Event Data for Use within Risk Assessments. England : Health & Safety Executive.
  8. Y. H. Kim, H. J. Lee, S. H. Yoo & S. Y. Huh. (2020). Analyzing the Determinants of Direct Imports of Liquefied Natural Gas by Private Companies in Korea. Journal of the Korean Society of Innovation, 15(3), 59-85. DOI : 10.46251/INNOS.2020.08.15.3.59
  9. Y. H. Cho. (2018). Increasing orders for LNG propulsion ships and predicting LNG bunkering business. Seoul : KDB Future Strategy Laboratory.
  10. S. H. Kim, H. W. Han, H. W. Bang & K. K. Lee. (2021). Development of SAW sensor-based hydrogen gas detection circuit and system. Proceedings of the KIEE Conference, 1638-1640.
  11. I. Joo, E. J. Cheon, G. A. Ryu, J. CH. Jin & K. H. Yoo. (2021). Effective techniques for data collection from a variety of PLCs. Proceedings of the Korea Contents Association Conference, 49-50.
  12. K. T. Lee & H. CH. Kim. (2021). A Basic Study on Real-Time Piping Monitoring System of Ships based on 3D Simulator using IoT Sensors. Journal of the Korea Academia-Industrial cooperation Society, 22(9), 769-777. DOI : 10.5762/KAIS.2021.22.9.7
  13. S. H. Park & M. S. Park. (2020). Measuring Inner or Outer Position of Ship Passenger and Detection of Dangerous Situations based LoRa WAN Communication. Journal of Korea Multimedia Society, 23(2), 282-292. DOI : 10.9717/kmms.2020.23.2.28
  14. S. H. Hong & B. K. Kim. (2022). The Efficient Ship Wireless Sensor Network Using Drone. Journal of the Korea Institute of Information andCommunication Engineering, 26(1), 122-127. DOI : 10.6109/jkiice.2022.26.1.122
  15. B. J. Park & M. S. Kim. (2022). A Study on the Characteristics of the Work Safety Environment Sensing Module for LNG Storage Tanks. Journal of Korea Multimedia Society, 25(2), 189-196. DOI : 10.9717/kmms.2022.25.2.189