References
- F. Steinmetz, M. von Meduna, L. Ante & I. Fiedler. (2021). Ownership, uses and perceptions of cryptocurrency: Results from a population survey. Technological Forecasting & Social Change, 173, 1-19. DOI : 10.1016/j.techfore.2021.121073
- B. Gaies, M. S. Nakhli, J. M. Sahut & K. Guesmi. (2021). Is Bitcoin rooted in confidence? Unraveling the determinants of globalized digital currencies. Technological Forecasting & Social Change, 172, 1-11. DOI : 10.1016/j.techfore.2021.121038
- L. Rognone, S. Hyde & S. S. Zhang. (2020). News sentiment in the cryptocurrency market: An empirical comparison with Forex. International Review of Financial Analysis, 69, 1-17. DOI : 10.1016/j.irfa.2020.101462
- C. C. Wu, S. L. Ho & C. C. Wu. (2021). The determinants of Bitcoin returns and volatility: perspectives on global and national economic policy uncertainty. Finance Research Letters, 102175, 1-7. DOI : 10.1016/j.frl.2021.102175
- I. D. Raheem. (2021). COVID-19 pandemic and the safe haven property of Bitcoin. The Quarterly Review of Economics and Finance, 81, 370-375. DOI : 10.1016/j.qref.2021.06.004
- S. Nakamoto. (2008). A peer-to-peer electronic cash system. (Online). http://www.lopp.net/pdf/bitcoin.pdf
- E. Cheah & J. Fry. (2015). Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin. Economics Letters, 130, 32-36. DOI : 10.1016/j.econlet.2015.02.029
- L. Kristoufek. (2015). What are the main drivers of the Bitcoin price? Evidence from wavelet coherence analysis. PLoS ONE, 10(4), 1-15. DOI : 10.1371/journal.pone.0123923
- F. Kjerland, A. Khazal, E. A. Krogstad, F. B. G. Nordstrom & A. Oust. (2018). An analysis of bitcoin's price dynamics. Journal of Risk and Financial Management, 11, 63, 1-18. DOI : 10.3390/jrfm11040063
- N. Cachanosky. (2019). Can Bitcoin become money? The monetary rule problem. Australian Economic Papers, 58, 365-374. DOI : 10.1111/1467-8454.12158
- S. Dastgir, E. Demir, G. Downing, G. Gozgor & C. K. M. Lau. (2019). The causal relationship between Bitcoin attention and Bitcoin returns: Evidence from the Copular-based Granger causality test. Finance Research Letters, 28, 160-164. DOI : 10.1016/j,frl.2018.04.019
- L. Goczek & I. Skliarov. (2019). What drives the Bitcoin price? A factor augmented error correction mechanism investigation. Applied Economics, 51(59), 6393-6410. DOI : 10.1080/00036846.2019.1619021
- A. S. Hayes. (2017). Cryptocurrency value formation: An empirical analysis leading to a cost of production model for valuing bitcoin. Telematics and Informatics, 34(7), 1308-1321. DOI : 10.1016/j.tele.2016.05.005
- E. Bouri, R. Gupta, C. K. M. Lau, D. Roubaud & S. Wang. (2018). Bitcoin and global financial stress: A copula-based approach to dependence and causality in the quantiles. The Quarterly Review of Economics and Finance, 69, 297-307. DOI : 10.1016/j.qref.2018.04.003
- J. Paule-Vianez, C. Prado-Roman & R. Gomez-Martinez. (2020). Economic policy uncertainty and Bitcoin. Is Bitcoin a safe-haven asset?. European Journal of Management and Business Economics, 29(3), 347-363. DOI : 10.1108/EJMBE-07-2019-0116
- E. Demir, G. Gozgor, C. K. M. Lau.& S. A. Vigne. (2018). Does economic policy uncertainty predict the Bitcoin returns? An empirical investigation. Finance Research Letters, 26, 145-149. DOI : 10.1016/j.frl.2018.01.005
- S. Wu, M. Tong, Z. Yang & A. Derbali. (2019). Does gold or Bitcoin hedge economic policy uncertainty?. Finance Research Letters, 31, 171-178. DOI : 10.1016/j.frl.2019.04.001
- S. A. Sarkodie, M. Y. Ahmed & P. A. Owusu. (2022). COVID-19 pandemic improve market signals of cryptocurrencies-evidence from Bitcoin, Bitcoin Cash, Ethereum, and Litecoin. Finance Reasearch Letters, 44, 1-10. DOI : 10.1016/j.qref.2021.102049
- E. Koo & G. Kim. (2021). Prediction of Bitcoin price based on manipulating distribution strategy. Applied Soft Computing, 110, 107738, 1-10. DOI : 10.1016/j.asoc.2021.107738
- M. Liu, G. Li, J. Li, X. Zhu & Y. Yao. (2021). Forecasting the price of Bitcoin using deep learning. Finance Research Letters, 40, 101755, 1-8. DOI : 10.1016/j.frl.2020.101755
- G. S. Atsalakis, I. G. Atsalaki, F. Pasiouras & C. Zopounidis. (2019). Bitcoin price forecasting with neuro-fuzzy techniques. European Journal of Operational Research, 276, 770-780. DOI : 10.1016/j.ejor.2019.01.040
- S. W. Kim. (2021). Performance analysis of Bitcoin investment strategy using deep learning. Journal of the Korean Convergence Society, 12(4), 249-258. DOI : 10.15207/JKCS.2021.12.4.249
- M. Nakano, A. Takahashi & S. Takahashi. (2018). Bitcoin technical trading with artificial neural network. Physia A, 510, 587-609. DOI : 10.1016/j.physa.2018.07.017
- L. A. Smales. (2022). Investor attention in cryptocurrency markets. International Review of Financial Analysis, 79, 101972, 1-17. DOI : 10.1016/j.irfa.2021.101972
- D. Philippas, H. Rjiba, K. Guesmi & S. Goutte. (2019). Media attention and Bitcoin prices. Finance Research Letters, 30, 37-43. DOI : 10.1016/j.frl.2019.03.031
- Q. Gu, N. Lu & L. Liu. (2019). A novel recurrent neural network algorithm with long short-term memory model for futures trading. Journal of Intelligent & Fuzzy Systems, 37, 4477-4484. DOI : 10.3233/JIFS-179280
- A. Yadav, C. K. Jha & A. Sharan. (2020). Optimizing LSTM for time series prediction in Indian stock market. Procedia Computer Science, 167, 2091-2100. DOI : 10.1016/j.procs.2020.03.257
- S. Hochreiter & J. Schmidhuber. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. DOI : 10.1162/neco.1997.9.8.1735
- F. Liu, Y. Li, B. Li, J. Li & H. Xie. (2021). Bitcoin transaction strategy construction based on deep reinforcement learning. Applied Soft Computing, 113, 107952, 1-8. DOI : 10.1016/j.asoc.2021.107952
- P. Jaquart, D. Dann & C. Weinhardt. (2021). Short-term Bitcoin market prediction via machine learning. The Journal of Finance and Data Science, 7, 45-66. DOI : 10.1016/j.jfds.2021.03.001
- M. Gang, B. Kim, M. G. Shin, U. J. Baek & M. S. Kim. (2020). LSTM-based prediction of Bitcoin price fluctuation using sentiment analysis. Proceedings of Symposium of the Korean Institute of Communications and Information Sciences, 561-562.
- S. W. Kim. (2021). COVID-19 fear index and stock market. Journal of Convergence for Information Technology, 11(9), 84-93. DOI : 10.22156/CS4SMB.2021.11.09.084
- W. Mensi, K. H. Al-Yahyaee, I. M. W. Al-Jarrah, X. V. Vo & S. H. Kang. (2021). Does volatility connectedness across major cryptocurrencies behave the same at different frequencies? A portfolio risk analysis. International Review of Economics and Finance, 76, 96-113. DOI : 10.1016/j.iref.2021.05.009
- S. Lahmiri & S. Bekiros. (2021). The effect of COVID-19 on long memory in retyrns and volatility of cryptocurrency and stock markets. Chaos, Solitons and Fractals, 151, 111221, 1-8. DOI : 10.1016/j.chaos.2021.111221