• Title/Summary/Keyword: 네이버 검색지수

Search Result 11, Processing Time 0.028 seconds

Forecasting Cryptocurrency Prices in COVID-19 Phase: Convergence Study on Naver Trends and Deep Learning (COVID-19 국면의 암호화폐 가격 예측: 네이버트렌드와 딥러닝의 융합 연구)

  • Kim, Sun-Woong
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.3
    • /
    • pp.116-125
    • /
    • 2022
  • The purpose of this study is to analyze whether investor anxiety caused by COVID-19 affects cryptocurrency prices in the COVID-19 pandemic, and to experiment with cryptocurrency price prediction based on a deep learning model. Investor anxiety is calculated by combining Naver's Corona search index and Corona confirmed information, analyzing Granger causality with cryptocurrency prices, and predicting cryptocurrency prices using deep learning models. The experimental results are as follows. First, CCI indicators showed significant Granger causality in the returns of Bitcoin, Ethereum, and Lightcoin. Second, LSTM with CCI as an input variable showed high predictive performance. Third, Bitcoin's price prediction performance was the highest in comparison between cryptocurrencies. This study is of academic significance in that it is the first attempt to analyze the relationship between Naver's Corona search information and cryptocurrency prices in the Corona phase. In future studies, extended studies into various deep learning models are needed to increase price prediction accuracy.

A Design of the Influence Value Computation Algorithm Based on Activity and Trust (활동성, 신뢰성 기반의 Influence 지수 산정 알고리즘 설계)

  • Choi, Chang-Hyun;Park, Gun-Woo;Lee, Sang-Hoon
    • Annual Conference of KIPS
    • /
    • 2009.04a
    • /
    • pp.383-386
    • /
    • 2009
  • 집단지성을 이용한 지식검색 서비스는 개방적 구조와, 축적된 자료를 공유할 수 있다는 커뮤니티적인 특성으로 큰 인기를 얻고 있다. 하지만 방대한 지식공유속에서 사용자가 진정으로 원하는 답변 획득은 점점 더 어려워지고 있다. 최근 알고리즘적으로 가장 정교하다고 평가 받는 구글을 통해 상위에 랭크된 검색결과들 중에는 집단지성을 통해 구축된 위키피디아, Yahoo Q/A 과 같은 Social 검색엔진의 검색결과들이 상당수 존재한다. 본 논문은 대부분의 질문은 인간으로부터 문제해결의 실마리를 얻을 수 있다는 점과 온라인상의 사용자에 대한 연구를 통해 지식검색 서비스 사용자중 Influence를 찾는것에 목적이 있다. 이에 국내 Social 검색 엔진의 대표인 네이버 지식iN을 중심으로 지식검색내의 사용자 활동성과 신뢰성을 분석하고, 이를 기반으로한 Influence 지수 산정 알고리즘을 제안한다. 제안된 알고리즘을 통한 Influence 지수는 지식검색 서비스에서 문제 해결의 실마리를 가진 사용자를 찾는 중요한 지표가 될 것이다.

The Relationship between Apartment Price Index and Naver Trend Index (아파트가격지수와 네이버 트렌드지수 간의 연관성)

  • Yoo, Han-Soo
    • Land and Housing Review
    • /
    • v.13 no.4
    • /
    • pp.45-53
    • /
    • 2022
  • This paper investigates empirically the lead-lag relation between the 'apartment price index' and 'Internet search volume'. This study uses Naver Trend Index as a proxy for Internet search volume. An increase in Internet search volume on the apartment price index indicates an increase in people's attention to an apartment. Different from previous studies exploring the relation between 'the released price index of the apartment' and 'Naver Trend Index', this study investigates the relation of the Naver Trend Index with 'the fundamental price component of an apartment' and 'the transitory price component of an apartment', respectively. The results of the Granger causality test reveal that there are bidirectional Granger causalities between the 'released price' and Naver Trend Index. In addition, the 'fundamental price component of an apartment' and Naver Trend Index have a feedback relation, while 'the transitory price component of an apartment' Granger causes the Naver Trend Index uni-directionally. The impulse response function analysis indicates that the shock of apartment prices increases Naver Trend Index in the first month. Overall, The close relationship between apartment prices and Naver Trend Index suggests that increases in the movement of apartment prices are positively associated with public attention on the apartment market.

An Influence Value Algorithm based on Social Network in Knowledge Retrieval Service (지식검색 서비스에서의 소셜 네트워크 기반 영향력 지수 알고리즘)

  • Choi, Chang-Hyun;Park, Gun-Woo;Lee, Sang-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.43-53
    • /
    • 2009
  • Knowledge retrieval service that uses collective intelligence which has special quality of open structure and can share the accumulative data is gaining popularity. However, acquiring the right needs for users from massive public knowledge is getting harder. Recently, search results from Google which is known for it's exquisite algorism, shows results for collective intelligence such as Wikipedia, Yahoo Q/A at the highest rank. Objective of this paper is to show that most answers come from human and to find the most influential people in on-line knowledge retrieval service. Hereupon, this paper suggest the influence value calculation algorism by analyzing user relation as centrality which social network is based on user activeness and reliance in Naver 지식iN. The influence value calculated by the suggested algorism will be an important index in distinguishing reliable and the right user for the question by ranking users with troubleshooting solutions in the knowledge retrieval service. This will contribute in search satisfaction by acquiring the right information and knowledge for the users which is the most important objective for knowledge retrieval service.

The Effect of Portal Search Intensity on Stock Price Synchronicity and Risk: Evidence from Korea (한국 포털 사이트 검색강도가 주가 동조성 및 위험에 미치는 영향)

  • Kim, Min-Su;Xu, Mengxia;Kwon, Hyuk-Jun
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.4
    • /
    • pp.125-141
    • /
    • 2020
  • Recent Studies emphasize the effect of investors attention, recognition and sentiment on the trading behavior of retail investors and stock price variation. In this study, we use Naver Trend to measure investors'attention and investigate the relation between investor attention and price synchronicity, total risk and systematic risk of stocks. Using various research methodologies such as portfolio analysis, fixed effect regression and dynamic panel analysis, we find consistent results. First, stock price synchronicity is increased with lager average search volume, but with less search variability. Second, both average search volume and its variability are positively related to total risk and beta of stocks. These results can be interpreted that search volume sharply increases only when stock-related event occurs.

A Study on the Impact of Economic Research Institutes in Korea using Citation Analysis of the Internet News (인터넷 뉴스 인용을 이용한 국내 경제연구기관 영향력에 관한 연구)

  • Kim, Hae-Min;Choi, Yoon-Kyung
    • Journal of Information Management
    • /
    • v.41 no.2
    • /
    • pp.161-181
    • /
    • 2010
  • The purpose of this study is to investigate citation behavior in internet news to research papers of 10 domestic economic institutes and to suggest institutes' impact quantitatively with h-index and various modified indices. Content analysis of 878 news articles that collected from NAVER news site was performed. First, as citing behavior, cited numbers of research papers, preferred news media, speed, source entry accuracy, centrality, subject section, and length by the institutes were examined. Next, impact indices for institutes were calculated by cited numbers using h-index, g-index, $h_s$-index, and $g_s$-index, and the ranking of 10 research institutes were determined by each impact indices. As a result, institutes belonged to upper ranks showed little variation among the different indices. On the other hand, institutes belonged to middle and lower ranks showed variations in impact indices and experts' survey.

The Effect of Portal Search Intensity on Stock Price Crash (포털 검색 강도가 주가 급락에 미치는 영향에 관한 연구)

  • Kim, Min-Su;Kwon, Hyuk-Jun
    • The Journal of Society for e-Business Studies
    • /
    • v.22 no.2
    • /
    • pp.153-168
    • /
    • 2017
  • Recent studies focus on the role of investor attention and transparency in stock-related information in explaining stock return and trading volume. Moreover, recent literatures predict that firm opacity will increase the likelihood of future stock price crashes. In this paper, we investigate, using Naver Trend, the relation between portal search intensity and stock price crash. Using various alternative measures of stock price crash risk and search intensity, we demonstrate that stocks with larger volume of portal search are less likely to experience stock price crashes. These results are consistent with our hypothesis that accumulated firm opacity cause future stock price crash. Finally, our results still hold even after we control for the potential effect of endogeneity in the regression specifications.

A Design and Implementation of Weather Forecast Chatbot Based on Kakaotalk Open Builder (카카오톡 오픈빌더 기반의 일기 예보 챗봇 설계 및 구현)

  • Lee, Won Joo;Gim, Han Su;Cha, Dae Yun;Lee, il u;Jung, Seong Jun;Cho, Seung Yeon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.29-30
    • /
    • 2019
  • 본 논문에서는 카카오i 오픈빌더 API를 활용하여 언제 어디서나 손쉬운 접근 방법으로 날씨 정보를 얻을 수 있는 챗봇을 설계하고 구현한다 이 챗봇은, 플러스 친구를 통해 친구 추가 후 이용 가능하며, Python의 Flask 웹 프레임워크를 통하여 날씨에 관한 기온, 미세 먼지 농도, 강수량, 자외선 지수, 캐스팅 정보 등을 네이버에서 사용자가 검색한 지역별로 크롤링 후 가공하여 서비스 한다.

  • PDF

Application of the Self-Calibrating Effective Drought Index: A Case Study of the Korean Peninsula (1777-2020) (자가교정 유효가뭄지수의 적용: 한반도에 대한 사례연구 (1777-2020))

  • Park, Chang-Kyun;Kam, Jonghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.109-109
    • /
    • 2022
  • 유효가뭄지수(Effective Drought Index, EDI)는 현재 기후에 대한 과거, 미래 기후에서의 상대적인 가뭄 특성 변화를 평가하기 위해 최근 30년간의 일 강수량 자료를 고정된 기준치로 사용한다. 이에 따라 장기간에 걸친 다양한 기후변화에 대한 인간 사회의 적응을 고려하며 가뭄의 영향을 평가할 때에는 한계점이 있다. 이 연구에서는 EDI의 기능을 확장하기 위해 자가교정 유효가뭄지수(self-calibrating EDI, scEDI)를 제안하고 그 성능을 평가하였다. 기존 EDI와는 다르게 scEDI는 관측시점을 기준으로 30년씩 이동하며 시간에 따라 변화하는 기후값을 기준치로 사용한다. 우리나라 서울관측소에서 1777년부터 2020년까지 누적된 244년간의 일 강수량 자료를 바탕으로, scEDI와 3개의 서로 다른 기후 기준치를 가진 기존 EDI를 계산하여 평가된 가뭄들의 특성을 비교하였다. 그 결과, 기후 기준치에 따라 서로 다른 가뭄 특성들을 보인 기존 EDI와 달리, scEDI는 변화하는 기후를 고려하여 분석기간에 걸쳐 가뭄의 특성을 일관되게 평가할 수 있는 것으로 밝혀졌다. 1807년부터 1907년까지 가뭄과 관련된 조선왕조실록의 기록과 scEDI가 평가한 과거 가뭄 사례들과 비교해 본 결과, scEDI가 탐지한 가뭄 사례들과 실제 조선왕조실록의 가뭄 기록이 비교적 잘 일치하여, scEDI가 과거의 사회적 가뭄을 잘 탐지하는 것으로 나타났다. 또한, 최근의 사회적 가뭄에 대한 scEDI의 탐지 능력을 평가하기 위해 구글과 네이버에서 2016년부터 2018년까지 수집된 가뭄 관련 검색어 소셜 빅데이터를 사용하여서 비교하였다. 그 결과, 과거와 마찬가지로 현재에서도 scEDI가 평가한 가뭄의 변화와 소셜 빅데이터에서 나타난 가뭄에 대한 사회적 반응이 잘 일치하는 것으로 나타났다.

  • PDF

Analyzing Undergraduate Nursing Students' Electronic Document Use and Document Reading Behavior (간호학과 학생들의 전자형태 문서이용 및 문서읽기행태에 대한 분석)

  • Na, Kyoungsik;Lee, Jisu
    • Journal of the Korean Society for information Management
    • /
    • v.31 no.3
    • /
    • pp.271-291
    • /
    • 2014
  • The purpose of this study is to analyze undergraduate nursing students' electronic document use and reading behavior. To do this, a survey questionnaire was collected from 509 respondents who experienced reading behavior for the last semester. The results of this study show that nursing students' preference of electronic documents is higher than that of printed documents in general. They also prefer electronic documents to printed documents when they want to keep documents. Of respondents, about 94% or higher spent 30mins or more to find information and the main source to find information is 'Naver' search engine as the highest information source, and the place to access information is 'Home' as their highest information access location. In particular, the preference of the document 'on the move' is electronic documents and the main reason includes convenience and easiness to access and move the documents. The findings of this study expect to facilitate the understanding of undergraduate nursing students electronic document use and reading behavior so that it can be used to design and develop medical digital library services and tools more effectively and efficiently in medical area in the future. Furthermore, it expects to provide useful data in promoting user services in digital library in a whole.