DOI QR코드

DOI QR Code

Double-stranded RNA(dsRNA)를 이용한 해충방제의 현황과 미래

Current and Future of dsRNA-mediated Pest Management

  • 윤준선 (전북대학교 농축산식품융합학과) ;
  • 지창윤 (제놀루션 R&D Center) ;
  • 성건묵 (충남대학교 응용생물학과) ;
  • 최만연 (미농무부 농업연구청)
  • Yoon, June-sun (Department of Agricultural Convergence Technology, Jeonbuk National University) ;
  • Ji, Chang Yoon (R&D Center, Genolution Inc.) ;
  • Seong, Keon Mook (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Choi, Man-yeon (USDA-ARS Horticultural Crops Research Unit)
  • 투고 : 2022.01.28
  • 심사 : 2022.02.22
  • 발행 : 2022.03.01

초록

지난 10년 동안, 이중 가닥 RNA (double-stranded RNA, dsRNA)를 이용한 특정 유전자 발현 간섭(RNA interference, RNAi) 기술은 의약품 개발뿐만 아니라 작물보호 분야에 해충방제부터 익충보호까지 다양하게 그 기술이 사용되어 왔다. 그동안 학계 및 산업체에서 활발히 연구되어 온 RNAi기술을 이용한 작물 및 익충보호제는 상용화를 눈앞에 두고 있다. 미래 농업 시장에서 해충방제제와 익충보호제로써의 개발을 위한 RNAi의 기술적 응용은 상당한 잠재력을 가지고 있지만, 현장에 직접 사용되기에는 아직 여러 가지 한계점이나 극복해야 할 과제가 남아있다. 본 리뷰에서는 최근에 활발히 진행되고 있는 작물보호제 및 익충보호제(protection of crops and beneficial insects)로써의 dsRNA의 다양한 활용과 그 잠재성(potential)을 소개하고자 한다.

Over the past decade, double-stranded RNA (dsRNA)-mediated gene silencing technology has progressed significantly for pest management in agriculture and for protecting beneficial insects from pathogens. Recently, breakthroughs in RNA interference (RNAi) applications for insect pest management by academia and commercial entities have provided RNAi products as commercial biopesticides. Although RNAi technology has vast potential and advantages for pest control, challenges, and limitations remain in practical applications. This review explores current challenges in the development of dsRNAs as a pest management tool and considers new approaches to overcome biological and environmental obstacles, such as poor stability and resistance.

키워드

과제정보

This work was funded by a grant (PJ015763) from the Rural Development Administration of Korea.

참고문헌

  1. Bachman, P.M., Huizinga, K.M., Jensen, P.D., Mueller, G., Tan, J., Uffman, J.P., Levine, S.L., 2016. Ecological risk assessment for DvSnf7 RNA: A plant-incorporated protectant with targeted activity against western corn rootworm. Regul. Toxicol. Pharmacol. 81, 77-88. doi: 10.1016/j.yrtph.2016.08.001
  2. Baum, J.A., Bogaert, T., Clinton, W., Heck, G.R., Feldmann, P., Ilagan, O., Johnson, S., Plaetinck, G., Munyikwa, T., Pleau, M., Vaughn, T., Roberts, J., 2007. Control of coleopteran insect pests through RNA interference. Nat. Biotechnol. 25, 1322-1326. doi:10.1038/nbt1359
  3. Chernikov, I.V., Vlassov, V.V., Chernolovskaya, E.L., 2019. Current development of siRNA bioconjugates: from research to the clinic. Front. Pharmacol. 10, 444. doi: 10.3389/fphar.2019.00444
  4. Choi, W.K., Lim, H.S., Lee, J.R., Song, H.-R., Kim, J.K., Shin, S.Y., Jung, Y.J., Seol, M.-A., Eum, S.-J., Kim, I.R., 2016. Establishment of environmental risk assessment standards in gene based LMOs. National Institution of Ecology. 2016 Report, pp. 76-84.
  5. Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., Mello, C.C., 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811. doi: 10.1038/35888
  6. Fletcher, S.J., Reeves, P.T., Hoang, B.T., Mitter, N., 2020. A perspective on RNAi-based biopesticides. Front. Plant Sci. 11, 51. doi: 10.3389/fpls.2020.00051
  7. Hu, B., Zhong, L., Weng, Y., Peng, L., Huang, Y., Zhao, Y., Liang, X.J., 2020. Therapeutic siRNA: state of the art. Signal Transduct. Target. Ther. 5, 101. doi: 10.1038/s41392-020-0207-x
  8. Hu, X., Kassa A., 2022. A Random-Screening Approach to Identify RNAi targets for the control of Western corn rootworm (Diabrotica. virgifera virgifera Le Conte), in: Vaschetto, M.L. (Eds.), RNAi Strategies for pest management methods and protocols. Methods Mol Biol. Springer Science, New York, pp. 91-103. doi: 10.1007/978-1-0716-1633-8
  9. Kim, Y., 2017. Insect pest control technique using dsRNA. Korean J. Appl. Entomol. 56, 153-164. doi: 10.5656/ksae.2017.03.0.008
  10. Kim, Y.H., Soumaila Issa, M., Cooper, A.M., Zhu, K.Y., 2015. RNA interference: applications and advances in insect toxicology and insect pest management. Pestic. Biochem. Physiol. 120, 109-117. doi: 10.1016/j.pestbp.2015.01.002
  11. Mehlhorn, S.G., Geibel, S., Bucher, G., Nauen, R., 2020. Profiling of RNAi sensitivity after foliar dsRNA exposure in different European populations of Colorado potato beetle reveals a robust response with minor variability. Pestic. Biochem. Physiol. 166, 104569. doi: 10.1016/j.pestbp.2020.104569
  12. Mishra, S., Dee, J., Moar, W., Dufner-Beattie, J., Baum, J., Dias, N.P., Alyokhin, A., Buzza, A., Rondon, S.I., Clough, M., Menasha, S., Groves, R., Clements, J., Ostlie, K., Felton, G., Waters, T., Snyder, W.E., Jurat-Fuentes, J.L., 2021. Selection for high levels of resistance to double-stranded RNA (dsRNA) in Colorado potato beetle (Leptinotarsa decemlineata Say) using non-transgenic foliar delivery. Sci. Rep. 11, 6523. doi: 10.1038/s41598-021-85876-1.
  13. Mitter, N., Worrall, E.A., Robinson, K.E., Li, P., Jain, R.G., Taochy, C., Fletcher, S.J., Carroll, B.J., Lu, G.Q., Xu, Z.P., 2017. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 3, 16207. doi: 10.1038/nplants.2016.207
  14. Naegeli, H., Birch, A.N., Casacuberta, J., De Schrijver, A., Gralak, M.A., Guerche, P., Jones, H., Manachini, B., Messean, A., Nielsen, E.E., Nogue, F., Robaglia, C., Rostoks, N., Sweet, J., Tebbe, C., Visioli, F., Wal, J.M., Ardizzone, M., De Sanctis, G., Fernandez Dumont, A., Gennaro, A., Gomez Ruiz, J.A., Lanzoni, A., Neri, F.M., Papadopoulou, N., Paraskevopoulos, K., Ramon, M., 2018. Assessment of genetically modified maize MON 87411 for food and feed uses, import and processing, under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2015-124). EFSA J. 16: e05310. doi: 10.2903/j.efsa.2018.5310
  15. Pugsley, C.E., Isaac, R.E., Warren, N.J. and Cayre, O.J., 2021. Recent advances in engineered nanoparticles for RNAi-mediated crop protection against insect pests. Front. Agron. 3. doi: 10.3389/fagro.2021.652981
  16. Rodrigues, T.B., Mishra, S.K., Sridharan, K., Barnes, E.R., Alyokhin, A., Tuttle, R., Kokulapalan, W., Garby, D., Skizim, N.J., Tang, Y.W., Manley, B., Aulisa, L., Flannagan, R.D., Cobb, C., Narva, K.E., 2021. First Sprayable double-stranded rNA-based biopesticide product targets proteasome subunit beta type-5 in Colorado potato beetle (Leptinotarsa decemlineata). Front. Plant Sci. 12: 728652. doi: 10.3389/fpls.2021.728652
  17. Shukla, J.N., Kalsi, M., Sethi, A., Narva, K.E., Fishilevich, E., Singh, S., Mogilicherla, K., Palli, S.R., 2016. Reduced stability and intracellular transport of dsRNA contribute to poor RNAi response in lepidopteran insects. RNA Biol. 13, 656-669. doi: 10.1080/15476286.2016.1191728
  18. Singh, I.K., Singh, S., Mogilicherla, K., Shukla, J.N., Palli, S.R., 2017. Comparative analysis of double-stranded RNA degradation and processing in insects. Sci. Rep. 7, 17059. doi: 10.1038/s41598-017-17134-2
  19. Tan, J., Levine, S.L., Bachman, P.M., Jensen, P.D., Mueller, G.M., Uffman, J.P., Meng, C., Song, Z., Richards, K.B., Beevers, M.H., 2016. No impact of DvSnf7 RNA on honey bee (Apis mellifera L.) adults and larvae in dietary feeding tests. Environ. Toxicol. Chem. 35, 287-294. doi: 10.1002/etc.3075
  20. Urits, I., Swanson, D., Swett, M.C., Patel, A., Berardino, K., Amgalan, A., Berger, A.A., Kassem, H., Kaye, A.D., Viswanath, O., 2020. A review of Patisiran (ONPATTRO(R)) for the treatment of polyneuropathy in people with hereditary transthyretin amyloidosis. Neurol. Ther. 9, 301-315. doi: 10.1007/s40120-020-00208-1
  21. Wang, W., Wang, W.H., Azadzoi, K.M., Su, N., Dai, P., Sun, J., Wang, Q., Liang, P., Zhang, W., Lei, X., Yan, Z., Yang, J.H., 2016. Activation of innate antiviral immune response via double-stranded RNA-dependent RLR receptor-mediated necroptosis. Sci. Rep. 6, 22550. doi: 10.1038/srep22550
  22. Yan, S., Ren, B.Y., Shen, J., 2021. Nanoparticle-mediated double-stranded RNA delivery system: a promising approach for sustainable pest management. Insect Sci. 28, 21-34. doi: 10.1111/1744-7917.12822
  23. Yoon, J.S., Ahn, S.J., Flinn, C.M., Choi, M.Y., 2021. Identification and functional analysis of dsRNases in spotted-wing drosophila, Drosophila suzukii. Arch. Insect Biochem. Physiol. 107, e21822. doi: 10.1002/arch.21822
  24. Yoon, J.S., Gurusamy, D., Palli, S.R., 2017. Accumulation of dsRNA in endosomes contributes to inefficient RNA interference in the fall armyworm, Spodoptera frugiperda. Insect Biochem. Mol. Biol. 90, 53-60. doi: 10.1016/j.ibmb.2017.09.011
  25. Yoon, J.S., Mogilicherla, K., Gurusamy, D., Chen, X., Scrr Chereddy, Palli, S.R., 2018. Double-stranded RNA binding protein, Staufen, is required for the initiation of RNAi in coleopteran insects. Proc. Natl. Acad. Sci. U.S.A. 115, 8334-8339. doi: 10.1073/pnas.1809381115
  26. Yoon, J.S., Tian, H.G., McMullen, J.G., Chung, S.H., Douglas, A.E., 2020. Candidate genetic determinants of intraspecific variation in pea aphid susceptibility to RNA interference. Insect Biochem. Mol. Biol. 123, 103408. doi: 10.1016/j.ibmb.2020.103408.
  27. Zhu, K.Y., Palli, S.R., 2020. Mechanisms, applications, and challenges of insect RNA interference. Annu. Rev. Entomol. 65, 293-311. doi: 10.1146/annurev-ento-011019-025224