과제정보
This work was funded by a grant (PJ015763) from the Rural Development Administration of Korea.
참고문헌
- Bachman, P.M., Huizinga, K.M., Jensen, P.D., Mueller, G., Tan, J., Uffman, J.P., Levine, S.L., 2016. Ecological risk assessment for DvSnf7 RNA: A plant-incorporated protectant with targeted activity against western corn rootworm. Regul. Toxicol. Pharmacol. 81, 77-88. doi: 10.1016/j.yrtph.2016.08.001
- Baum, J.A., Bogaert, T., Clinton, W., Heck, G.R., Feldmann, P., Ilagan, O., Johnson, S., Plaetinck, G., Munyikwa, T., Pleau, M., Vaughn, T., Roberts, J., 2007. Control of coleopteran insect pests through RNA interference. Nat. Biotechnol. 25, 1322-1326. doi:10.1038/nbt1359
- Chernikov, I.V., Vlassov, V.V., Chernolovskaya, E.L., 2019. Current development of siRNA bioconjugates: from research to the clinic. Front. Pharmacol. 10, 444. doi: 10.3389/fphar.2019.00444
- Choi, W.K., Lim, H.S., Lee, J.R., Song, H.-R., Kim, J.K., Shin, S.Y., Jung, Y.J., Seol, M.-A., Eum, S.-J., Kim, I.R., 2016. Establishment of environmental risk assessment standards in gene based LMOs. National Institution of Ecology. 2016 Report, pp. 76-84.
- Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., Mello, C.C., 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811. doi: 10.1038/35888
- Fletcher, S.J., Reeves, P.T., Hoang, B.T., Mitter, N., 2020. A perspective on RNAi-based biopesticides. Front. Plant Sci. 11, 51. doi: 10.3389/fpls.2020.00051
- Hu, B., Zhong, L., Weng, Y., Peng, L., Huang, Y., Zhao, Y., Liang, X.J., 2020. Therapeutic siRNA: state of the art. Signal Transduct. Target. Ther. 5, 101. doi: 10.1038/s41392-020-0207-x
- Hu, X., Kassa A., 2022. A Random-Screening Approach to Identify RNAi targets for the control of Western corn rootworm (Diabrotica. virgifera virgifera Le Conte), in: Vaschetto, M.L. (Eds.), RNAi Strategies for pest management methods and protocols. Methods Mol Biol. Springer Science, New York, pp. 91-103. doi: 10.1007/978-1-0716-1633-8
- Kim, Y., 2017. Insect pest control technique using dsRNA. Korean J. Appl. Entomol. 56, 153-164. doi: 10.5656/ksae.2017.03.0.008
- Kim, Y.H., Soumaila Issa, M., Cooper, A.M., Zhu, K.Y., 2015. RNA interference: applications and advances in insect toxicology and insect pest management. Pestic. Biochem. Physiol. 120, 109-117. doi: 10.1016/j.pestbp.2015.01.002
- Mehlhorn, S.G., Geibel, S., Bucher, G., Nauen, R., 2020. Profiling of RNAi sensitivity after foliar dsRNA exposure in different European populations of Colorado potato beetle reveals a robust response with minor variability. Pestic. Biochem. Physiol. 166, 104569. doi: 10.1016/j.pestbp.2020.104569
- Mishra, S., Dee, J., Moar, W., Dufner-Beattie, J., Baum, J., Dias, N.P., Alyokhin, A., Buzza, A., Rondon, S.I., Clough, M., Menasha, S., Groves, R., Clements, J., Ostlie, K., Felton, G., Waters, T., Snyder, W.E., Jurat-Fuentes, J.L., 2021. Selection for high levels of resistance to double-stranded RNA (dsRNA) in Colorado potato beetle (Leptinotarsa decemlineata Say) using non-transgenic foliar delivery. Sci. Rep. 11, 6523. doi: 10.1038/s41598-021-85876-1.
- Mitter, N., Worrall, E.A., Robinson, K.E., Li, P., Jain, R.G., Taochy, C., Fletcher, S.J., Carroll, B.J., Lu, G.Q., Xu, Z.P., 2017. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 3, 16207. doi: 10.1038/nplants.2016.207
- Naegeli, H., Birch, A.N., Casacuberta, J., De Schrijver, A., Gralak, M.A., Guerche, P., Jones, H., Manachini, B., Messean, A., Nielsen, E.E., Nogue, F., Robaglia, C., Rostoks, N., Sweet, J., Tebbe, C., Visioli, F., Wal, J.M., Ardizzone, M., De Sanctis, G., Fernandez Dumont, A., Gennaro, A., Gomez Ruiz, J.A., Lanzoni, A., Neri, F.M., Papadopoulou, N., Paraskevopoulos, K., Ramon, M., 2018. Assessment of genetically modified maize MON 87411 for food and feed uses, import and processing, under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2015-124). EFSA J. 16: e05310. doi: 10.2903/j.efsa.2018.5310
- Pugsley, C.E., Isaac, R.E., Warren, N.J. and Cayre, O.J., 2021. Recent advances in engineered nanoparticles for RNAi-mediated crop protection against insect pests. Front. Agron. 3. doi: 10.3389/fagro.2021.652981
- Rodrigues, T.B., Mishra, S.K., Sridharan, K., Barnes, E.R., Alyokhin, A., Tuttle, R., Kokulapalan, W., Garby, D., Skizim, N.J., Tang, Y.W., Manley, B., Aulisa, L., Flannagan, R.D., Cobb, C., Narva, K.E., 2021. First Sprayable double-stranded rNA-based biopesticide product targets proteasome subunit beta type-5 in Colorado potato beetle (Leptinotarsa decemlineata). Front. Plant Sci. 12: 728652. doi: 10.3389/fpls.2021.728652
- Shukla, J.N., Kalsi, M., Sethi, A., Narva, K.E., Fishilevich, E., Singh, S., Mogilicherla, K., Palli, S.R., 2016. Reduced stability and intracellular transport of dsRNA contribute to poor RNAi response in lepidopteran insects. RNA Biol. 13, 656-669. doi: 10.1080/15476286.2016.1191728
- Singh, I.K., Singh, S., Mogilicherla, K., Shukla, J.N., Palli, S.R., 2017. Comparative analysis of double-stranded RNA degradation and processing in insects. Sci. Rep. 7, 17059. doi: 10.1038/s41598-017-17134-2
- Tan, J., Levine, S.L., Bachman, P.M., Jensen, P.D., Mueller, G.M., Uffman, J.P., Meng, C., Song, Z., Richards, K.B., Beevers, M.H., 2016. No impact of DvSnf7 RNA on honey bee (Apis mellifera L.) adults and larvae in dietary feeding tests. Environ. Toxicol. Chem. 35, 287-294. doi: 10.1002/etc.3075
- Urits, I., Swanson, D., Swett, M.C., Patel, A., Berardino, K., Amgalan, A., Berger, A.A., Kassem, H., Kaye, A.D., Viswanath, O., 2020. A review of Patisiran (ONPATTRO(R)) for the treatment of polyneuropathy in people with hereditary transthyretin amyloidosis. Neurol. Ther. 9, 301-315. doi: 10.1007/s40120-020-00208-1
- Wang, W., Wang, W.H., Azadzoi, K.M., Su, N., Dai, P., Sun, J., Wang, Q., Liang, P., Zhang, W., Lei, X., Yan, Z., Yang, J.H., 2016. Activation of innate antiviral immune response via double-stranded RNA-dependent RLR receptor-mediated necroptosis. Sci. Rep. 6, 22550. doi: 10.1038/srep22550
- Yan, S., Ren, B.Y., Shen, J., 2021. Nanoparticle-mediated double-stranded RNA delivery system: a promising approach for sustainable pest management. Insect Sci. 28, 21-34. doi: 10.1111/1744-7917.12822
- Yoon, J.S., Ahn, S.J., Flinn, C.M., Choi, M.Y., 2021. Identification and functional analysis of dsRNases in spotted-wing drosophila, Drosophila suzukii. Arch. Insect Biochem. Physiol. 107, e21822. doi: 10.1002/arch.21822
- Yoon, J.S., Gurusamy, D., Palli, S.R., 2017. Accumulation of dsRNA in endosomes contributes to inefficient RNA interference in the fall armyworm, Spodoptera frugiperda. Insect Biochem. Mol. Biol. 90, 53-60. doi: 10.1016/j.ibmb.2017.09.011
- Yoon, J.S., Mogilicherla, K., Gurusamy, D., Chen, X., Scrr Chereddy, Palli, S.R., 2018. Double-stranded RNA binding protein, Staufen, is required for the initiation of RNAi in coleopteran insects. Proc. Natl. Acad. Sci. U.S.A. 115, 8334-8339. doi: 10.1073/pnas.1809381115
- Yoon, J.S., Tian, H.G., McMullen, J.G., Chung, S.H., Douglas, A.E., 2020. Candidate genetic determinants of intraspecific variation in pea aphid susceptibility to RNA interference. Insect Biochem. Mol. Biol. 123, 103408. doi: 10.1016/j.ibmb.2020.103408.
- Zhu, K.Y., Palli, S.R., 2020. Mechanisms, applications, and challenges of insect RNA interference. Annu. Rev. Entomol. 65, 293-311. doi: 10.1146/annurev-ento-011019-025224