Browse > Article
http://dx.doi.org/10.5656/KSAE.2022.02.0.017

Current and Future of dsRNA-mediated Pest Management  

Yoon, June-sun (Department of Agricultural Convergence Technology, Jeonbuk National University)
Ji, Chang Yoon (R&D Center, Genolution Inc.)
Seong, Keon Mook (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University)
Choi, Man-yeon (USDA-ARS Horticultural Crops Research Unit)
Publication Information
Korean journal of applied entomology / v.61, no.1, 2022 , pp. 211-219 More about this Journal
Abstract
Over the past decade, double-stranded RNA (dsRNA)-mediated gene silencing technology has progressed significantly for pest management in agriculture and for protecting beneficial insects from pathogens. Recently, breakthroughs in RNA interference (RNAi) applications for insect pest management by academia and commercial entities have provided RNAi products as commercial biopesticides. Although RNAi technology has vast potential and advantages for pest control, challenges, and limitations remain in practical applications. This review explores current challenges in the development of dsRNAs as a pest management tool and considers new approaches to overcome biological and environmental obstacles, such as poor stability and resistance.
Keywords
RNAi; dsRNA; Knockdown; Biopesticide; Pest management;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Yoon, J.S., Mogilicherla, K., Gurusamy, D., Chen, X., Scrr Chereddy, Palli, S.R., 2018. Double-stranded RNA binding protein, Staufen, is required for the initiation of RNAi in coleopteran insects. Proc. Natl. Acad. Sci. U.S.A. 115, 8334-8339. doi: 10.1073/pnas.1809381115   DOI
2 Urits, I., Swanson, D., Swett, M.C., Patel, A., Berardino, K., Amgalan, A., Berger, A.A., Kassem, H., Kaye, A.D., Viswanath, O., 2020. A review of Patisiran (ONPATTRO(R)) for the treatment of polyneuropathy in people with hereditary transthyretin amyloidosis. Neurol. Ther. 9, 301-315. doi: 10.1007/s40120-020-00208-1   DOI
3 Hu, X., Kassa A., 2022. A Random-Screening Approach to Identify RNAi targets for the control of Western corn rootworm (Diabrotica. virgifera virgifera Le Conte), in: Vaschetto, M.L. (Eds.), RNAi Strategies for pest management methods and protocols. Methods Mol Biol. Springer Science, New York, pp. 91-103. doi: 10.1007/978-1-0716-1633-8   DOI
4 Naegeli, H., Birch, A.N., Casacuberta, J., De Schrijver, A., Gralak, M.A., Guerche, P., Jones, H., Manachini, B., Messean, A., Nielsen, E.E., Nogue, F., Robaglia, C., Rostoks, N., Sweet, J., Tebbe, C., Visioli, F., Wal, J.M., Ardizzone, M., De Sanctis, G., Fernandez Dumont, A., Gennaro, A., Gomez Ruiz, J.A., Lanzoni, A., Neri, F.M., Papadopoulou, N., Paraskevopoulos, K., Ramon, M., 2018. Assessment of genetically modified maize MON 87411 for food and feed uses, import and processing, under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2015-124). EFSA J. 16: e05310. doi: 10.2903/j.efsa.2018.5310   DOI
5 Chernikov, I.V., Vlassov, V.V., Chernolovskaya, E.L., 2019. Current development of siRNA bioconjugates: from research to the clinic. Front. Pharmacol. 10, 444. doi: 10.3389/fphar.2019.00444   DOI
6 Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., Mello, C.C., 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811. doi: 10.1038/35888   DOI
7 Kim, Y., 2017. Insect pest control technique using dsRNA. Korean J. Appl. Entomol. 56, 153-164. doi: 10.5656/ksae.2017.03.0.008   DOI
8 Baum, J.A., Bogaert, T., Clinton, W., Heck, G.R., Feldmann, P., Ilagan, O., Johnson, S., Plaetinck, G., Munyikwa, T., Pleau, M., Vaughn, T., Roberts, J., 2007. Control of coleopteran insect pests through RNA interference. Nat. Biotechnol. 25, 1322-1326. doi:10.1038/nbt1359   DOI
9 Choi, W.K., Lim, H.S., Lee, J.R., Song, H.-R., Kim, J.K., Shin, S.Y., Jung, Y.J., Seol, M.-A., Eum, S.-J., Kim, I.R., 2016. Establishment of environmental risk assessment standards in gene based LMOs. National Institution of Ecology. 2016 Report, pp. 76-84.
10 Fletcher, S.J., Reeves, P.T., Hoang, B.T., Mitter, N., 2020. A perspective on RNAi-based biopesticides. Front. Plant Sci. 11, 51. doi: 10.3389/fpls.2020.00051   DOI
11 Rodrigues, T.B., Mishra, S.K., Sridharan, K., Barnes, E.R., Alyokhin, A., Tuttle, R., Kokulapalan, W., Garby, D., Skizim, N.J., Tang, Y.W., Manley, B., Aulisa, L., Flannagan, R.D., Cobb, C., Narva, K.E., 2021. First Sprayable double-stranded rNA-based biopesticide product targets proteasome subunit beta type-5 in Colorado potato beetle (Leptinotarsa decemlineata). Front. Plant Sci. 12: 728652. doi: 10.3389/fpls.2021.728652   DOI
12 Shukla, J.N., Kalsi, M., Sethi, A., Narva, K.E., Fishilevich, E., Singh, S., Mogilicherla, K., Palli, S.R., 2016. Reduced stability and intracellular transport of dsRNA contribute to poor RNAi response in lepidopteran insects. RNA Biol. 13, 656-669. doi: 10.1080/15476286.2016.1191728   DOI
13 Yan, S., Ren, B.Y., Shen, J., 2021. Nanoparticle-mediated double-stranded RNA delivery system: a promising approach for sustainable pest management. Insect Sci. 28, 21-34. doi: 10.1111/1744-7917.12822   DOI
14 Zhu, K.Y., Palli, S.R., 2020. Mechanisms, applications, and challenges of insect RNA interference. Annu. Rev. Entomol. 65, 293-311. doi: 10.1146/annurev-ento-011019-025224   DOI
15 Tan, J., Levine, S.L., Bachman, P.M., Jensen, P.D., Mueller, G.M., Uffman, J.P., Meng, C., Song, Z., Richards, K.B., Beevers, M.H., 2016. No impact of DvSnf7 RNA on honey bee (Apis mellifera L.) adults and larvae in dietary feeding tests. Environ. Toxicol. Chem. 35, 287-294. doi: 10.1002/etc.3075   DOI
16 Hu, B., Zhong, L., Weng, Y., Peng, L., Huang, Y., Zhao, Y., Liang, X.J., 2020. Therapeutic siRNA: state of the art. Signal Transduct. Target. Ther. 5, 101. doi: 10.1038/s41392-020-0207-x   DOI
17 Mishra, S., Dee, J., Moar, W., Dufner-Beattie, J., Baum, J., Dias, N.P., Alyokhin, A., Buzza, A., Rondon, S.I., Clough, M., Menasha, S., Groves, R., Clements, J., Ostlie, K., Felton, G., Waters, T., Snyder, W.E., Jurat-Fuentes, J.L., 2021. Selection for high levels of resistance to double-stranded RNA (dsRNA) in Colorado potato beetle (Leptinotarsa decemlineata Say) using non-transgenic foliar delivery. Sci. Rep. 11, 6523. doi: 10.1038/s41598-021-85876-1.   DOI
18 Pugsley, C.E., Isaac, R.E., Warren, N.J. and Cayre, O.J., 2021. Recent advances in engineered nanoparticles for RNAi-mediated crop protection against insect pests. Front. Agron. 3. doi: 10.3389/fagro.2021.652981   DOI
19 Singh, I.K., Singh, S., Mogilicherla, K., Shukla, J.N., Palli, S.R., 2017. Comparative analysis of double-stranded RNA degradation and processing in insects. Sci. Rep. 7, 17059. doi: 10.1038/s41598-017-17134-2   DOI
20 Wang, W., Wang, W.H., Azadzoi, K.M., Su, N., Dai, P., Sun, J., Wang, Q., Liang, P., Zhang, W., Lei, X., Yan, Z., Yang, J.H., 2016. Activation of innate antiviral immune response via double-stranded RNA-dependent RLR receptor-mediated necroptosis. Sci. Rep. 6, 22550. doi: 10.1038/srep22550   DOI
21 Yoon, J.S., Gurusamy, D., Palli, S.R., 2017. Accumulation of dsRNA in endosomes contributes to inefficient RNA interference in the fall armyworm, Spodoptera frugiperda. Insect Biochem. Mol. Biol. 90, 53-60. doi: 10.1016/j.ibmb.2017.09.011   DOI
22 Yoon, J.S., Tian, H.G., McMullen, J.G., Chung, S.H., Douglas, A.E., 2020. Candidate genetic determinants of intraspecific variation in pea aphid susceptibility to RNA interference. Insect Biochem. Mol. Biol. 123, 103408. doi: 10.1016/j.ibmb.2020.103408.   DOI
23 Kim, Y.H., Soumaila Issa, M., Cooper, A.M., Zhu, K.Y., 2015. RNA interference: applications and advances in insect toxicology and insect pest management. Pestic. Biochem. Physiol. 120, 109-117. doi: 10.1016/j.pestbp.2015.01.002   DOI
24 Mitter, N., Worrall, E.A., Robinson, K.E., Li, P., Jain, R.G., Taochy, C., Fletcher, S.J., Carroll, B.J., Lu, G.Q., Xu, Z.P., 2017. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 3, 16207. doi: 10.1038/nplants.2016.207   DOI
25 Yoon, J.S., Ahn, S.J., Flinn, C.M., Choi, M.Y., 2021. Identification and functional analysis of dsRNases in spotted-wing drosophila, Drosophila suzukii. Arch. Insect Biochem. Physiol. 107, e21822. doi: 10.1002/arch.21822   DOI
26 Bachman, P.M., Huizinga, K.M., Jensen, P.D., Mueller, G., Tan, J., Uffman, J.P., Levine, S.L., 2016. Ecological risk assessment for DvSnf7 RNA: A plant-incorporated protectant with targeted activity against western corn rootworm. Regul. Toxicol. Pharmacol. 81, 77-88. doi: 10.1016/j.yrtph.2016.08.001   DOI
27 Mehlhorn, S.G., Geibel, S., Bucher, G., Nauen, R., 2020. Profiling of RNAi sensitivity after foliar dsRNA exposure in different European populations of Colorado potato beetle reveals a robust response with minor variability. Pestic. Biochem. Physiol. 166, 104569. doi: 10.1016/j.pestbp.2020.104569   DOI