• Title/Summary/Keyword: dsRNA

Search Result 179, Processing Time 0.028 seconds

Insect Pest Control Technique Using dsRNA (dsRNA를 이용한 해충방제 기술)

  • Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.56 no.2
    • /
    • pp.153-164
    • /
    • 2017
  • Gene silencing using double-stranded RNA (dsRNA) has been widely used in functional genomics in biological organisms. Its principle stems from RNA interference (RNAi), a post-transcriptional control of gene expression. Suppression of specific gene expression using dsRNA may give significant lethal effect. Insect pest control exploits this molecular process to develop novel insecticides using specific dsRNAs. This review explains core principles of RNAi using dsRNA. Then it illustrates various examples to control insect pests using dsRNAs. It also discusses limitations to control insect pests using dsRNAs. Finally, it provides several breakthroughs to develop dsRNA insecticides.

Molecular Biological Characteristics of Ustilago maydis Virus Isolated in Korea

  • Won, Yie-Se;Choi, Hyoung-Tae
    • Korean Journal of Microbiology
    • /
    • v.30 no.3
    • /
    • pp.177-180
    • /
    • 1992
  • Among 120 U. maydis strains isolated in Korea 14 different strains containing specific viral dsRNA segments were analyzed for the distribution of dsRNA and the production of toxin protein. Several distinctive dsRNA patterns were identified, 9 cases of P type with typical H, M and L ds RNA and one case of non-P-type, the frequency of a specific isolate was decreased with increasing number of dsRNA segments. The presence of dsRNA had no effect on the cultural or morphological phenotype of the host. Two isolates containing P type dsRNA segments appeared to produce toxin protein (killer strains) which inhibited the growth of 4 isolates (sensitive strain) with different susceptibility. Two killer strains contain unique M dsRNA segment which may code for toxin protein. However, the presence of toxin-sensitive strains among dsRNA-free isolates was similar to that of ds RNA containing strains.

  • PDF

RT-PCR Detection of dsRNA Mycoviruses Infecting Pleurotus ostreatus and Agaricus blazei Murrill

  • Kim, Yu-Jeong;Park, Sang-Ho;Yie, Se-Won;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.343-348
    • /
    • 2005
  • The partial nucleotide sequences of the genomic dsRNA mycoviruses infecting Pleurotus ostreatus (isolates ASI2596, ASI2597, and Bupyungbokhoe) and Agaricus blazei Murrill were determined and compared with those of the other dsRNA mycoviruses. Partial nucleotide sequences of the purified dsRNA from ASI2596 and ASI2597 revealed RNA-dependent RNA polymerase sequences that are closely related to Oyster mushroom isometric virus 2, while nucleotide sequences and the deduced amino acid sequence from dsRNA mycovirus infecting Agaricus blazei did not show any significant homology to the other dsRNA mycoviruses. Specific primers were designed for RT-PCR detection of these dsRNA viruses and were found to specifically detect each dsRNA virus. Northern blot analysis confirmed the homogeneity of RT-PCR products to each purified dsRNA. Altogether, our results suggest that these virus-specific primer sets can be employed for the specific detection of each dsRNA mycovirus in infected mushrooms.

Acute Oral Toxicity of dsRNA to Honey Bee, Apis mellifera (꿀벌에 대한 dsRNA의 급성섭식독성 평가)

  • Lim, Hye Song;Jung, Young Jun;Kim, Il Ryong;Kim, Jin;Ryu, Sungmin;Kim, Banni;Lee, Jung Ro;Choi, Wonkyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.4
    • /
    • pp.241-248
    • /
    • 2017
  • BACKGROUND: RNA interference (RNAi) eliminates or decreases gene expression by disrupting the target mRNA or by interfering with translation. Recently, RNAi technique was applied to generate new crop traits which provide protection against pests. To establish the environmental risk assessment protocol of RNAi LMO in lab scale, we developed dsRNA expression system using E. coli and tested acute oral toxicity assay to honey. METHOD AND RESULTS: The dsRNA expression vector, L4440, was chosen and cloned 240 bp of Snf7 and GFP gene fragment. To develop the maximum dsRNA induction condition in E. coli, we tested induction time, temperature and IPTG concentration in media. To estimate the risk assessment of dsRNA to honey bee, it has been selected and cultured with dsRNA supplement for 48 hours according to OECD guideline. As a result, the optimum condition of dsRNA induction was $37^{\circ}C$, 4 hours and 0.4 mM IPTG concentration and the difference between Snf7 and GFP dsRNA molecules from E. coli was not significant in survival and behavior to honey bee. Furthermore, blast search results indicated that effective match of predicted dsRNA fragments were not existed in honey bee genome. CONCLUSION: In this study, we developed and tested the acute oral toxicity of dsRNA using E. coli expression system to honey bee.

Molecular Analysis of double-stranded RNA in Abnormal Growing Oyster-Mushrooms, Pleurotos florida and P. ostreatus due to Virus Infection (Virus 이병(罹病) 느타리버섯 (Pleurotus)으로부터 double-stranded RNA 의 분리(分離))

  • Go, Seung-Joo;Park, Yong-Hwan;Shin, Gwan-Chull;Wessels, Josep G.H.
    • The Korean Journal of Mycology
    • /
    • v.20 no.3
    • /
    • pp.234-239
    • /
    • 1992
  • The experiment was performed to find out the possibilities to detect virus infection in oyster mushrooms, Pleurotus species by analysis of doublestranded ribonucleic acid (ds RNA). Ds RNA segments were extracted from virus infected isolates which grew abnormally. But virus free isolates didn't show any ds RNA segments. The ds RNA was consisted of one large segment of 8100 base pairs (bp) and 4 smaller segments with 2170, 2120, 1980 and 1984 bp. Whereas, cell free virus particles showed only one larger ds RNA segment. The ds RNA was dissolved by RNase A in low salt, 0.1 M SSC and melted at $85^{\circ}C$. It was possible to use the ds RNA analysis for detecting virus infection directly from the host cells.

  • PDF

Dietary Risk Assessment of Snf7 dsRNA for Coccinella septempunctata

  • Jung, Young Jun;Seol, Min-A;Choi, Wonkyun;Lee, Jung Ro
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.2 no.3
    • /
    • pp.210-218
    • /
    • 2021
  • Recently, pest-resistant living modified (LM) crops developed using RNA interference (RNAi) technology have been imported into South Korea. However, the potential adverse effects of unintentionally released RNAi-based LM crops on non-target species have not yet been reported. Coccinella septempunctata, which feeds on aphids, is an important natural enemy insect which can be exposed to the double-stranded RNA (dsRNA) produced by RNAi-based LM plants. To assess the risk of ingestion of Snf7 dsRNA by C. septempunctata, we first identified the species through morphological analysis of collected insects. A method for species identification at the gene level was developed using a specific C. septempunctata 12S rRNA. Furthermore, an experimental model was devised to assess the risk of Snf7 dsRNA ingestion in C. septempunctata. Snf7 dsRNA was mass-purified using an effective dsRNA synthesis method and its presence in C. septempunctata was confirmed after treatment with purified Snf7 dsRNA. Finally, the survival rate, development time, and dry weight of Snf7 dsRNA-treated C. septempunctata were compared with those of GFP and vATPase A dsRNA control treatments, and no risk was found. This study illustrates an effective Snf7 dsRNA synthesis method, as well as a high-concentration domestic insect risk assessment method which uses dsRNA to assess the risk of unintentional released of LM organisms against non-target species.

Investigation of Agrobacterium-mediated Transient dsRNA Expression in Tobacco

  • Choi, Wonkyun;Lim, HyeSong;Seo, Hankyu;Kim, Dong Wook
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.4
    • /
    • pp.394-402
    • /
    • 2019
  • The Agrobacterium tumefaciens mediated gene transfer is widely used to generate genetic transformation of plants and transient assay of temporal exogenous gene expression. Syringe infiltration system into tobacco (Nicotiana benthamiana) leaves is a powerful tool for transient expression of target protein to study protein localization, protein-protein binding and protein production. However, the protocol and technical information of transient gene expression, especially double strand RNA (dsRNA), in tobacco using Agrobacterium is not well known. Recently, dsRNA is crucial for insecticidal effect on destructive agronomic pest such as Corn rootworm. In this study, we investigated the factor influencing the dsRNA expression efficiency of syringe agro-infiltration in tobacco. To search the best combination for dsRNA transient expression in tobacco, applied two Agrobacterium cell lines and three plant vector systems. The efficiency of dsRNA expression has estimated by real-time PCR and digital PCR. As a result, pHellsgate12 vector constructs showed the most effective accumulation of dsRNA in the cell. These results indicated that the efficiency of dsRNA expression was depending on the kind of vector rather than Agrobacterium cells. In summary, the optimized combination of transient dsRNA expression system in tobacco might be useful to in vivo dsRNA expression for functional study and risk assessment of dsRNA.

Complete genome sequence of Fusarium hypovirus DK2l strain and genomic diversity of dsRNA mycoviruses isolated from Fusarium graminearum

  • Lim, Won-Seok;Chu, Yeon-Mee;Lee, Yin-Won;Kim, Kook-Hyung
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.117.3-118
    • /
    • 2003
  • We tested for the presence of double-stranded RNA (dsRNA) mycovirus in 827 Fusarium graminearum isolated from diseased barley and maize. dsRNA mycoviruses with various sizes were isolated. Of them, it was previously reported that dsRNA from DK2l isolate had pronounced morphological changes, including reduction in mycelial growth, increased to red pigmentation, reduced virulence and sporulation. (Chu et al., Appl. Environ. Microbiol. 2002). For better understanding of this hypovirulence associated with DK2l dsRNA virus, we determined the complete nucleotide sequence of dsRNA genome and named Fusarium hypovirus DK2l strain (Fhv-DK2l ). Genomic RNA of Fhv-DK2l was determined to be 6625 nucleotides in length excluding the poly (A) tail and contained three putative open reading frame. RNA-dependent RNA polymerase (RdRp) and helicase domain were expected in ORF A, 54 to 4709 nucleotide position. ORE B, 4752 to 5216 nucleotide position, and ORF C, 5475 to 6578 nucleotide position, were predicted to encode 16.7kDa and 41.3kDa protein respectively each. We could not detect any conserved domains from these two proteins. Phylogenetic analysis showed Fhv-DK2l was related to Cryphonectria hypovirus 3. Ten additional isolates were found that were infected with dsRNA mycoviruses. These mycoviruses contain 2 to 4 different segments of dsRNAs with the size range of approximately 1.7 to 10-kbp in length. The presence of dsRNAs isolates did not affect colony morphology and were transmissible through conidia and ascospore with incidence of 30-100%. These results indicate that there is genomic diversity of dsRNA mycoviruses that infect F. graminearum isolates and that impact of virus infection on host's morphology and virulence is determined by the interaction between dsRNAs and the fungal host, not by the mere presence of the dsRNAs

  • PDF

Application of simple and massive purification system of dsRNA in vivo for acute toxicity to Daphnia magna

  • CHOI, Wonkyun;LIM, Hye Song;KIM, Jin;RYU, Sung-Min;LEE, Jung Ro
    • Entomological Research
    • /
    • v.48 no.6
    • /
    • pp.533-539
    • /
    • 2018
  • The RNA interference (RNAi) has been considered as an important genetic tool and applied to develop a new living modified (LM) crop trait which is an improvement of nutrient quality or pest management. The RNAi of DvSnf7 has been used for resistance to LM maize and the Western Corn Rootworm which is a major agricultural pest for the US Corn Belt. Most of the environmental risk assessments (ERA) of double strand RNA (dsRNA) have been performed using in vitro transcript products, and not in vivo expressed product. A large amount of dsRNA was required for the acute toxicity assay of water fleas. Therefore development of massive dsRNA purification techniques is critical. Daphnia, a freshwater microcrustacean, is a model organism for studying cellular and molecular mechanism involved in life history traits and ecotoxicology. In this study, we established the massive dsRNA purification method using Escherichia coli and implemented acute toxicity assays to Daphnia magna. As a result, the present RNase A and DNase I, dsRNA was efficiently purified without any special techniques or equipment. Even though purified dsRNA existed during the acute toxicity test, lethality or abnormal behavior were not observed in D. magna. These results indicated that GFP and DvSnf7 dsRNA were not significantly affected to D. magna due to their lack of sequence matching in its genome. The purification method of dsRNA and the acute toxicity assay of water fleas using purified dsRNA would be suitable for the toxicological studies of LMOs to aquatic non-target organisms.

Molecular Characterization of Fusarium Graminearum Virus 2 Isolated from Fusarium graminearum Strain 98-8-60

  • Yu, Ji-Suk;Lee, Kyung-Mi;Son, Moon-Il;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.27 no.3
    • /
    • pp.285-290
    • /
    • 2011
  • Fusarium graminearum virus 2 (FgV2) infects Fusarium graminearum strain 98-8-60 and has at least five segments of double-stranded RNAs (dsRNAs), denoted as dsRNA-1 to dsRNA-5. In this study, the genome of FgV2 was sequenced and its phylogenetic relationship with other mycoviruses was analyzed. The lengths of FgV2 dsRNAs 1-5 ranged from 2414 to 3580 base pairs (bp). The 5' and 3' untranslated regions (UTRs) are highly conserved, and each dsRNA segment had 78-105 and 84-306 bp of 5' and 3' UTRs, respectively. Each dsRNA segment contained a single open reading frame (ORF). Computer analysis of dsRNA-1 revealed a putative open reading frame (ORF) that shows high sequence identity with an RNA-dependent RNA polymerase (RdRp) containing eight conserved motifs. dsRNAs 2-5 also each contain one putative ORF coding for products of unknown function. The sequences of FgV2 dsRNA-2 and dsRNA-3 have significant sequence identity with Magnaporthe oryzae chrysovirus 1 (MoCV1) dsRNA-3 and -4, respectively. When compared to other dsRNA mycoviruses in a phylogenetic analysis of the putative RdRp protein, FgV2 was found to form a distinct virus clade with Aspergillus mycovirus 1816 and MoCV1 in the family Chrysoviridae.