• Title/Summary/Keyword: 녹다운

Search Result 4, Processing Time 0.018 seconds

Finite Element Modelling of Axially Compressed GFRP Cylindrical Panels (축방향으로 압축을 받는 GFRP 원통형 판넬의 유한요소 모델링)

  • Kim, Ki Du
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.15-25
    • /
    • 1993
  • In order to promote the efficient use of composite materials, effort is currently being directed at the development of design criteria for composite structures. Insofar as design against buckling is concerned, it is well known that, for metal shells, a key step is the definition of 'knockdown' factors on the elastic critical buckling stress accounting mainly for the influence of initial geometric imperfections. At present, the imperfection sensitivity of composite shells has not been explored in detail. Due to the large number of parameters influencing buckling response (considerably larger than for isotropic shells), a very large number of tests would be needed to quantify imperfection sensitivity experimentally. An alternative approach is to use validated numerical models for this task. Thus, the objective of this paper is to outline the underlying theory used in developing a composite shell element and to present results from a validation exercise and subsequently from a parametric study on axially loaded glass fibre-reinforced plastic (GFRP) curved panels using finite element modelling. Both eigenvalue and incremental analyses are performed, the latter including the effect of initial geometric imperfection shape and amplitude, and the results are used to estimate 'knockdown' factors for such panels.

  • PDF

A study on the accelerated life test method of hose assemblies by applying Knockdown stress (녹다운 스트레스에 의한 유압호스 조립체의 가속수명시험에 대한 연구)

  • Ko, Jae-Myoung;Lee, Yong-Bum;Han, Sung-Geon;Yoo, Young-Chul;Kim, Hyoung-Eui
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2006.05a
    • /
    • pp.93-100
    • /
    • 2006
  • The failure of hydraulic hose assemblies is caused by the impulse pressure and repetitive motions of bending and stretching (flexing) used at high pressure pipe in the form of bursting Since it takes long time to observe the bursting for life analysis, we can reduce test time by the method of applying the Knockdown stress which is equivalent to 70% of initial bursting pressure on rubber hose assemblies with maintaining the failure mode equally In this study, after scale parameter, shape parameter, and acceleration factor by preforming the impulse pressure test until the hose bursts, and finally analyzed the accelerated life.

  • PDF

Current and Future of dsRNA-mediated Pest Management (Double-stranded RNA(dsRNA)를 이용한 해충방제의 현황과 미래)

  • Yoon, June-sun;Ji, Chang Yoon;Seong, Keon Mook;Choi, Man-yeon
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.211-219
    • /
    • 2022
  • Over the past decade, double-stranded RNA (dsRNA)-mediated gene silencing technology has progressed significantly for pest management in agriculture and for protecting beneficial insects from pathogens. Recently, breakthroughs in RNA interference (RNAi) applications for insect pest management by academia and commercial entities have provided RNAi products as commercial biopesticides. Although RNAi technology has vast potential and advantages for pest control, challenges, and limitations remain in practical applications. This review explores current challenges in the development of dsRNAs as a pest management tool and considers new approaches to overcome biological and environmental obstacles, such as poor stability and resistance.

Hepatitis C Virus Core Protein Activates p53 to Inhibit E6-associated Protein Expression via Promoter Hypermethylation (C형 간염바이러스 코어 단백질에 의한 p53 활성화와 프로모터 과메틸화를 통한 E6AP 발현 억제)

  • Kwak, Juri;Jang, Kyung Lib
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.1007-1015
    • /
    • 2018
  • The E6-associated protein (E6AP) is known to induce the ubiquitination and proteasomal degradation of HCV core protein and thereby directly impair capsid assembly, resulting in a decline in HCV replication. To counteract this anti-viral host defense system, HCV core protein has evolved a strategy to inhibit E6AP expression via DNA methylation. In the present study, we further explored the mechanism by which HCV core protein inhibits E6AP expression. HCV core protein upregulated both the protein levels and enzyme activities of DNA methyltransferase 1 (DNMT1), DNMT3a, and DNMT3b to inhibit E6AP expression via promoter hypermethylation in HepG2 cells but not in Hep3B cells, which do not express p53. Interestingly, p53 overexpression alone in Hep3B cells was sufficient to activate DNMTs in the absence of HCV core protein and thereby inhibit E6AP expression via promoter hypermethylation. In addition, upregulation of p53 was absolutely required for the HCV core protein to inhibit E6AP expression via promoter hypermethylation, as evidenced by both p53 knockdown and ectopic expression experiments. Accordingly, levels of the ubiquitinated forms of HCV core protein were lower in HepG2 cells than in Hep3B cells. Based on these observations, we conclude that HCV core protein evades ubiquitin-dependent proteasomal degradation in a p53-dependent manner.