Acknowledgement
The authors are thankful to the learned referee for his/her deep observations and their suggestions, which greatly helped us to improve the paper significantly.
References
- S. Alizadeh, F. Moradlou and P. Salimi, Some fixed point results for (α, β)-(ψ, φ)-contractive mappings, Filomat, 28(3) (2014), 635-647. https://doi.org/10.2298/FIL1403635A
- H.H. Alsulami, E. Karapinar, F. Khojasteh and A.F. Roldan-Lopez-de-Hierro, A proposal to the study of contractions in quasi-metric spaces, Discrete Dyna. Nature and Soc., (2014) Article ID 269286, 1-10.
- A.H. Ansari, J. Nantadilok and M.S. Khan, Best proximity points of generalized cyclic weak (F, ψ, ϕ)-contractions in ordered metric spaces, Nonlinear Funct. Anal. Appl., 25(1) (2020), 55-67.
- H. Argoubi, B. Samet and C. Vetro, Nonlinear contractions involving simulation functions in a metric space with a partial order, J. Nonlinear Sci. Appl., 8 (2015), 1082-1094. https://doi.org/10.22436/jnsa.008.06.18
- H. Aydi and A. Felhi, Fixed points in modular spaces via α-admissible mappings and simulation functions, J. Nonlinear Sci. Appl., 9 (2016), 3686-3701. https://doi.org/10.22436/jnsa.009.06.20
- H. Aydi, A. Felhi and S. Sahmim, On common fixed points for (α, ψ)-contractions and generalized cyclic contractions in b-metric like spaces and consequences, J. Nonlinear Sci. Appl., 9 (2016), 2492-2510. https://doi.org/10.22436/jnsa.009.05.48
- H. Aydi, E. Karapinar and V. Rakocevic, Non unique fixed point theorem on b-metric spaces via simulation functions, Jordan J. Math. Stat., 12 (2019), 265-288.
- M. Bousselsal and Z. Mostefaoui, Some common fixed point results in partial metric spaces for generalized rational type contraction mappings, Nonlinear Funct. Anal. Appl., 20(1) (2015), 43-54.
- Seong-Hoon Cho, Fixed point theorem for (α, β)-z contractions in metric spaces, Int. J. Math. Anal., 13(4) (2019), 161-174. https://doi.org/10.12988/ijma.2019.9318
- A. Das, B. Hazarika, H.K. Nashine and J.K. Kim, ψ-coupled fixed point theorem via simulation functions in complete partially ordered metric space and its applications, Nonlinear Funct. Anal. Appl., 26(2) (2021), 273-288. https://doi.org/10.22771/NFAA.2021.26.02.03
- E. Karapinar Fixed points results via simulation functions, Filomat, 30 (2016), 2343-2350. https://doi.org/10.2298/FIL1608343K
- E. Karapinar and F. Khojasteh, An approach to best proximity point results via simulation functions, J. Fixed Point Theorey Appl., 19 (2017), 1983-1995. https://doi.org/10.1007/s11784-016-0380-2
- E. Karapinar and B. Samet, Generalized α - ψ contractive type mappings and related fixed point theorems with applications, Abst. Appl. Anal., 2012 (2012), 17 pages.
- F. Khojasteh, S. Shukla and S. Radenovic, A new approach to the study of fixed point theory for simulation function, Filomat, 29(6) (2015), 1189-1194. https://doi.org/10.2298/FIL1506189K
- H.K. Nashine, R.W. Ibrahim, Y.J. Cho and J.K. Kim, Fixed point theorems for the modified simulation function and applications to fractional economics systems, Nonlinear Funct. Anal. Appl., 26 (1) (2021), 137-155. https://doi.org/10.22771/NFAA.2021.26.01.10
- H. Qawagneh, M.S. Noorani, W. Shatanawi, K. Abodayeh and H. Alsamir, Fixed point for mappings under contractive condition based on simulation functions and cyclic (α, β)-admissibility, J. Math. Anal., 9(1) (2018), 38-51.
- A.F. Roldan-Lopez-de-Hierro, E. Karapinar, C. Roldan-Lopez-de-Hierro and J. Martinez-Moreno, Coincidence point theorems on metric spaces via simulation functions, J. Comput. Appl. Math., 275 (2015), 345-355. https://doi.org/10.1016/j.cam.2014.07.011
- B. Samet, C. Vetro and P. Vetro, Fixed point theorems for (α - ψ)-contractive type mappings, Nonlinear Anal., 75 (2012), 2154-2165. https://doi.org/10.1016/j.na.2011.10.014