Nonlinear Functional Analysis and Applications
Vol. 27, No. 4 (2022), pp. 757-771
ISSN: 1229-1595(print), 2466-0973(online)
https://doi.org/10.22771/nfaa.2022.27.04.05
http://nfaa.kyungnam.ac.kr/journal-nfaa
kupress
Copyright © 2022 Kyungnam University Press

SOME FIXED POINT THEOREMS FOR RATIONAL (α, β, Z)-CONTRACTION MAPPINGS UNDER SIMULATION FUNCTIONS AND CYCLIC (α, β)-ADMISSIBILITY

Snehlata Mishra ${ }^{1}$, Anil Kumar Dubey ${ }^{2}$, Urmila Mishra ${ }^{3}$ and Ho Geun Hyun ${ }^{4}$
${ }^{1}$ Dr. C. V. Raman University, Kargi Road, Kota, Bilaspur (Chhattisgarh), PIN-491001, India e-mail: snehmis76@gmail.com
${ }^{2}$ Department of Mathematics, Bhilai Institute of Technology, Bhilai House, Durg (Chhattisgarh), India
e-mail: anilkumardby70@gmail.com
${ }^{3}$ Department of Mathematics, Vishwavidyalaya Engineering College, (A Constituent College of CSVTU, Bhilai)
Ambikapur(Chhattisgarh), India
e-mail: mishra.urmila@gmail.com
${ }^{4}$ Department of Mathematics Education, Kyungnam University, Changwon, Gyeongnam, 51767, Korea e-mail: hyunhg8285@kyungnam.ac.kr

Abstract

In this paper, we present some fixed point theorems for rational type contractive conditions in the setting of a complete metric space via a cyclic (α, β)-admissible mapping imbedded in simulation function. Our results extend and generalize some previous works from the existing literature. We also give some examples to illustrate the obtained results.

[^0]
1. Introduction

Recently, Samet et al. [18] proved a generalization of Banach contraction principle by introducing the notion of $\alpha-\psi$ contractive type mappings and α-admissible mappings. This concept is further generalized by many authors ($[3,5,6,13]$) by introducing generalized $\alpha-\psi$ contractive type mapping and α-admissible mapping in different metric spaces.

The concept of cyclic (α, β)-admissible mapping was introduced by Alizadeh et al. [1] by generalizing the concept of α-admissible mapping of Samet et al. [18]. They proved various fixed point theorems in the setting of metric spaces. Also, Khojasteh et al. [14] introduced the notion of z-contraction by defining the concept of simulation function. The concept of Khojasteh et al. [14] is further modified by Argoubi et al. [4]. They proved the existence of common fixed point results of a pair of nonlinear operators satisfying a certain contractive condition involving simulation functions, in the setting of ordered metric spaces. Afterward, several authors discussed the existence of fixed point by using the simulation function, for instance see ($[2,7,9,10,11$, $12,15,16,17])$.

In this paper, we consider rational (α, β, Z) contraction mappings under simulation functions involving a cyclic (α, β)-admissibility in a metric space. For this kind of contractions, we establish some fixed point results. Our results are generalization and extension of the results [9] and [16]. For more results of rational type contractions and Z-contraction we refer the paper in ($[7,8,9$, $11,12,16,17]$) and references cited therein.

Now we will give some basic definitions and results in metric spaces before presenting our main results.

2. Preliminaries

Alizadeh et al. [1] introduced the notion of cyclic (α, β)-admissible mapping which is defined as follows:

Definition 2.1. ([1]) Let X be a nonempty set, f be a self-mapping on X and $\alpha, \beta: X \rightarrow[0,+\infty)$ be two mappings. We say that f is a cyclic $(\alpha, \beta)-$ admissible mapping if $x \in X$ with

$$
\alpha(x) \geq 1 \Rightarrow \beta(f(x)) \geq 1
$$

and

$$
\begin{equation*}
\beta(x) \geq 1 \Rightarrow \alpha(f(x)) \geq 1 \tag{2.1}
\end{equation*}
$$

In 2015, Khojasteh et al. [14] introduced the class of simulation functions as given below and by using this definition they proved the following theorem:

Definition 2.2. Let $\zeta:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$ be a mapping. Then ζ is called a simulation function if it satisfies the following conditions:
$\left(\zeta_{1}\right) \zeta(0,0)=0$;
$\left(\zeta_{2}\right) \zeta(t, s)<s-t$ for all $t, s>0$;
$\left(\zeta_{3}\right)$ if $\left\{t_{n}\right\}$ and $\left\{s_{n}\right\}$ are sequences in $(0, \infty)$ such that $\lim _{n \rightarrow \infty} t_{n}=\lim _{n \rightarrow \infty} s_{n}=l>0$, then $\limsup \sup _{n \rightarrow \infty} \zeta\left(t_{n}, s_{n}\right)<0$.

Theorem 2.3. ([14]) Let (X, d) be a complete metric space and $T: X \rightarrow X$ be a Z-contraction mapping with respect to a simulation function ζ, that is,

$$
\zeta(d(T x, T y), d(x, y)) \geq 0
$$

for all $x, y \in X$. Then T has a unique fixed point.
It is worth mentioning that the Banach contraction is an example of Z contraction by defining $\zeta:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$ via $\zeta(t, s)=\gamma s-t$ for all $s, t \in[0, \infty)$, where $\gamma \in[0,1)$.

Argoubi et al.[4] modified the definition of [14] as follows:
Definition 2.4. A simulation function is a function $\zeta:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$ that satisfies the following conditions
(1) $\zeta(t, s)<s-t$ for all $t, s>0$;
(2) if $\left\{t_{n}\right\}$ and $\left\{s_{n}\right\}$ are sequences in $(0, \infty)$ such that $\lim _{n \rightarrow \infty} t_{n}=\lim _{n \rightarrow \infty} s_{n}=l>0$, then $\lim \sup _{n \rightarrow \infty} \zeta\left(t_{n}, s_{n}\right)<0$.

It is clear that any simulation function in the sense of Khojasteh et al. [14] (Definition 2.2) is also a simulation function in the sense of Argoubi et al. [4] (Definition 2.4). The following example is a simulation function in the sense of Argoubi et al. [4].

Example 2.5. Define a function $\zeta:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$ by

$$
\zeta(t, s)= \begin{cases}1, & \text { if }(\mathrm{s}, \mathrm{t})=(0,0) \\ \lambda s-t, & \text { if otherwise }\end{cases}
$$

where $\lambda \in(0,1)$. Then ζ is a simulation function.

3. Main results

Now, we are ready to prove our result with the following definitions.
Definition 3.1. Let (X, d) be a complete metric space, $T: X \rightarrow X$ be a mapping and $\alpha, \beta: X \rightarrow[0, \infty)$ be two functions. Then T is said to be a rational (α, β, Z)-contraction mapping if it satisfies the following conditions:
(1) T is cyclic (α, β)-admissible,
(2) there exists a simulation function $\zeta \in Z$ such that

$$
\begin{equation*}
\alpha(x) \beta(y) \geq 1 \Rightarrow \zeta(d(T x, T y), M(x, y)) \geq 0, \tag{3.1}
\end{equation*}
$$

holds for all $x, y \in X$, where

$$
M(x, y)=\max \left\{d(x, y), \frac{d(x, T x) d(y, T y)}{1+d(x, y)}, \frac{d(x, T x) d(y, T y)}{1+d(T x, T y)}\right\} .
$$

Theorem 3.2. Let (X, d) be a complete metric space, $T: X \rightarrow X$ be a mapping and $\alpha, \beta: X \rightarrow[0, \infty)$ be two functions. Suppose that the following conditions hold:
(1) T is a rational (α, β, Z)-contraction mapping.
(2) There exists an element $x_{0} \in X$ such that $\alpha\left(x_{0}\right) \geq 1$ and $\beta\left(x_{0}\right) \geq 1$.
(3) T is continuous.

Then T has a fixed point $u \in X$.
Proof. Assume that there exists $x_{0} \in X$ such that $\alpha\left(x_{0}\right) \geq 1$. We divide our proof into the following three steps:

Step 1. Define a sequence $\left\{x_{n}\right\}$ in X such that $x_{n+1}=T x_{n}$ for all $n \in$ $\mathbb{N} \cup\{0\}$. If $x_{n}=x_{n+1}$ for all $n \in \mathbb{N} \cup\{0\}$, then T has a fixed point and the proof is finished. Hence, we assume that $x_{n} \neq x_{n+1}$ for some $n \in \mathbb{N} \cup\{0\}$, that is $d\left(x_{n}, x_{n+1}\right) \neq 0$ for $n \in \mathbb{N} \cup\{0\}$. Since T is a cyclic (α, β)-admissible mapping, $\alpha\left(x_{0}\right) \geq 1$ and $\beta\left(x_{0}\right) \geq 1$,

$$
\beta\left(x_{1}\right)=\beta\left(T x_{0}\right) \geq 1 .
$$

It implies that

$$
\alpha\left(x_{2}\right)=\alpha\left(T x_{1}\right) \geq 1 .
$$

And also, we have

$$
\alpha\left(x_{1}\right)=\alpha\left(T x_{0}\right) \geq 1 .
$$

It implies that

$$
\beta\left(x_{2}\right)=\beta\left(T x_{1}\right) \geq 1 .
$$

By the continuing the above process, we have $\alpha\left(x_{n}\right) \geq 1$ and $\beta\left(x_{n}\right) \geq 1$, for all $n \in \mathbb{N} \cup\{0\}$. Thus $\alpha\left(x_{n}\right) \beta\left(x_{n+1}\right) \geq 1$, for all $n \in \mathbb{N} \cup\{0\}$. Therefore, we get

$$
\begin{equation*}
\zeta\left(d\left(T x_{n}, T x_{n+1}\right), M\left(x_{n}, x_{n+1}\right)\right) \geq 0 \tag{3.2}
\end{equation*}
$$

for all $n \in \mathbb{N}$, where

$$
\begin{align*}
M\left(x_{n}, x_{n+1}\right)= & \max \left\{d\left(x_{n}, x_{n+1}\right), \frac{d\left(x_{n}, T x_{n}\right) d\left(x_{n+1}, T x_{n+1}\right)}{1+d\left(x_{n}, x_{n+1}\right)},\right. \\
& \left.\frac{d\left(x_{n}, T x_{n}\right) d\left(x_{n+1}, T x_{n+1}\right)}{1+d\left(T x_{n}, T x_{n+1}\right)}\right\} \\
= & \max \left\{d\left(x_{n}, x_{n+1}\right), \frac{d\left(x_{n}, x_{n+1}\right) d\left(x_{n+1}, x_{n+2}\right)}{1+d\left(x_{n}, x_{n+1}\right)},\right. \\
& \left.\frac{d\left(x_{n}, x_{n+1}\right) d\left(x_{n+1}, x_{n+2}\right)}{1+d\left(x_{n+1}, x_{n+2}\right)}\right\} \\
= & \max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, x_{n+2}\right)\right\} . \tag{3.3}
\end{align*}
$$

It follows that

$$
\begin{equation*}
\zeta\left(d\left(x_{n+1}, x_{n+2}\right), \max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, x_{n+2}\right)\right\}\right) \geq 0 \tag{3.4}
\end{equation*}
$$

$\left(\zeta_{2}\right)$ of Definition 2.2 implies that

$$
\begin{aligned}
0 & \leq \zeta\left(d\left(x_{n+1}, x_{n+2}\right), \max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, x_{n+2}\right)\right\}\right) \\
& <\max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, x_{n+2}\right)\right\}-d\left(x_{n+1}, x_{n+2}\right) .
\end{aligned}
$$

Thus, we conclude that

$$
\begin{equation*}
d\left(x_{n+1}, x_{n+2}\right)<\max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, x_{n+2}\right)\right\} \tag{3.5}
\end{equation*}
$$

for all $n \geq 1$. From (3.5), we have

$$
\begin{equation*}
d\left(x_{n+1}, x_{n+2}\right)<d\left(x_{n}, x_{n+1}\right) \text { for all } n \geq 1 . \tag{3.6}
\end{equation*}
$$

It follows that the sequence $\left\{d\left(x_{n}, x_{n+1}\right)\right\}$ is nonincreasing. Therefore, there exists $r \geq 0$ such that

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=r .
$$

Note that if $r \neq 0$, that is $r>0$, then by $\left(\zeta_{2}\right)$ of Definition 2.2, we have

$$
0 \leq \limsup _{n \rightarrow \infty} \zeta\left(d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, x_{n+2}\right)\right)<0,
$$

which is a contradiction. This implies that $r=0$, that is

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0 . \tag{3.7}
\end{equation*}
$$

Step 2. Now, we prove that $\left\{x_{n}\right\}$ is a Cauchy sequence. Suppose to the contrary, that is, $\left\{x_{n}\right\}$ is not a Cauchy sequence. Then there exists $\epsilon>0$ and two subsequences $\left\{x_{m_{(k)}}\right\}$ and $\left\{x_{n_{(k)}}\right\}$ of $\left\{x_{n}\right\}$ with $m_{(k)}>n_{(k)}>k$ and $m_{(k)}$ is the smallest index in \mathbb{N} such that

$$
d\left(x_{n_{(k)}}, x_{m_{(k)}}\right) \geq \epsilon .
$$

So, $d\left(x_{n_{(k)}}, x_{m_{(k)-1}}\right)<\epsilon$. Triangular inequality implies that

$$
\begin{aligned}
\epsilon & \leq d\left(x_{n_{(k)}}, x_{m_{(k)}}\right) \\
& \leq d\left(x_{n_{(k)}}, x_{m_{(k)-1}}\right)+d\left(x_{m_{(k)-1}}, x_{m_{(k)}}\right) \\
& <\epsilon+d\left(x_{m_{(k)-1}}, x_{m_{(k)}}\right)
\end{aligned}
$$

Taking $k \rightarrow \infty$ in the above inequality and using (3.7), we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{n_{(k)}}, x_{m_{(k)}}\right)=\epsilon . \tag{3.8}
\end{equation*}
$$

Again, by triangular inequality, we have

$$
\begin{aligned}
& d\left(x_{n_{(k)-1}}, x_{m_{(k)-1}}\right) \leq d\left(x_{n_{(k)-1}}, x_{n_{k}}\right)+d\left(x_{n_{(k)}}, x_{m_{(k)}}\right) \\
&+d\left(x_{m_{(k)}}, x_{m_{(k)-1}}\right) \\
& \leq d\left(x_{n_{(k)-1}}, x_{n_{k}}\right)+d\left(x_{n_{(k)}}, x_{n_{(k)-1}}\right) \\
&+d\left(x_{n_{(k)-1}}, x_{m_{(k)}}\right)+d\left(x_{m_{(k)}}, x_{m_{(k)-1}}\right) \\
& \leq 2 d\left(x_{n_{(k)}}, x_{n_{(k)-1}}\right)+d\left(x_{n_{(k)-1}}, x_{m_{(k)-1}}\right) \\
&+d\left(x_{m_{(k)-1}}, x_{m_{(k)}}\right)+d\left(x_{m_{(k)}}, x_{m_{(k)-1}}\right) \\
& \leq \begin{array}{l}
2 d\left(x_{n_{(k)}}, x_{n_{(k)-1}}\right)+d\left(x_{m_{(k)-1}}, x_{n_{(k)-1}}\right) \\
\\
\end{array}+2 d\left(x_{m_{(k)-1}}, x_{m_{(k)}}\right) .
\end{aligned}
$$

Taking $k \rightarrow \infty$ in the above inequality and using (3.7) and (3.8), we get

$$
\begin{align*}
\lim _{k \rightarrow \infty} d\left(x_{n_{(k)}}, x_{m_{(k)}}\right) & =\lim _{k \rightarrow \infty} d\left(x_{n_{(k)}-1}, x_{m_{(k)}-1}\right) \tag{3.9}\\
& =\epsilon .
\end{align*}
$$

Since $\alpha\left(x_{n}\right) \geq 1$ and $\beta\left(x_{n}\right) \geq 1$ for all $n=1,2,3, \ldots$, we conclude that

$$
\alpha\left(x_{n_{(k)}-1}\right) \beta\left(x_{m_{(k)}-1}\right) \geq 1 .
$$

Since T is a rational (α, β, Z)-contraction, we have

$$
\begin{equation*}
\zeta\left(d\left(T x_{n_{(k)}-1}, T x_{m_{(k)}-1}\right), M\left(x_{n_{(k)}-1}, x_{m_{(k)}-1}\right)\right) \geq 0 \tag{3.10}
\end{equation*}
$$

for all $x, y \in X$, where

$$
\begin{aligned}
M\left(x_{n_{(k)-1}}, x_{m_{(k)-1}}\right)= & \max \left\{d\left(x_{n_{(k)-1}}, x_{m_{(k)-1}}\right)\right. \\
& \frac{d\left(x_{n_{(k)-1}}, T x_{n_{(k)-1}}\right) d\left(x_{m_{(k)-1}}, T x_{m_{(k)-1}}\right)}{1+d\left(x_{n_{(k)-1}}, x_{m_{(k)-1}}\right)}, \\
& \left.\frac{d\left(x_{n_{(k)-1}}, T x_{n_{(k)-1}}\right) d\left(x_{m_{(k)-1}}, T x_{m_{(k)-1}}\right)}{1+d\left(T x_{n_{(k)-1}}, T x_{m_{(k)-1}}\right)}\right\} \\
= & \max \left\{d\left(x_{n_{(k)-1}}, x_{m_{(k)-1}}\right)\right. \\
& \frac{d\left(x_{n_{(k)-1}}, x_{n_{(k)}}\right) d\left(x_{m_{(k)-1}}, x_{m_{(k)}}\right)}{1+d\left(x_{n_{(k)-1}}, x_{m_{(k)-1}}\right)}, \\
= & \left.\frac{d\left(x_{n_{(k)-1}}, x_{n_{(k)}}\right) d\left(x_{m_{(k)-1}}, x_{m_{(k)}}\right)}{1+d\left(x_{n_{(k)}}, x_{m_{(k)}}\right)}\right\} \\
= & \max \left\{d\left(x_{n_{(k)-1}}, x_{m_{(k)-1}}\right), d\left(x_{n_{(k)-1}}, x_{n_{(k)}}\right)\right\} .
\end{aligned}
$$

By (3.7) and (3.9), we conclude that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} M\left(x_{n_{(k)-1}}, x_{m_{(k)-1}}\right)=\epsilon . \tag{3.11}
\end{equation*}
$$

Note that by $\left(\zeta_{2}\right)$ and $\left(\zeta_{3}\right)$ of Definition 2.2, implies that

$$
0 \leq \lim \sup \zeta\left(d\left(T x_{n_{(k)-1}}, T x_{m_{(k)-1}}\right), M\left(x_{n_{(k)-1}}, x_{m_{(k)-1}}\right)\right)<0,
$$

which is a contradiction. Thus $\left\{x_{n}\right\}$ is a Cauchy sequence.
Step 3. Finally, we prove that T has a fixed point. Since $\left\{x_{n}\right\}$ is a Cauchy sequence in the complete metric space X, there exists a $x^{*} \in X$ such that $x_{n} \rightarrow x^{*}$. The continuity of T implies that $T x_{2 n} \rightarrow T x^{*}$. Since $x_{2 n+1}=T x_{2 n}$ and $x_{2 n+1} \rightarrow x^{*}$, by uniqueness of limit, we get $T x^{*}=x^{*}$. So x^{*} is a fixed point of T. This completes the proof.

We begin our next result with the following definitions and notations.
Definition 3.3. We denote by Ψ the family of all nondecreasing functions $\psi:[0, \infty) \rightarrow[0, \infty)$ such that
$\left(\Psi_{1}\right) \psi$ is a continuous;
$\left(\Psi_{2}\right) \psi^{-1}(\{0\})=0$.
Definition 3.4. Let (X, d) be a complete metric space, $T: X \rightarrow X$ be a mapping and $\alpha, \beta: X \rightarrow[0, \infty)$ be two functions. Then T is said to be a generalized rational (α, β, Z)-contraction mapping if T satisfies the following conditions:
(1) T is a cyclic (α, β)-admissible,
(2) there exists a simulation function $\zeta \in Z$ such that

$$
\begin{equation*}
\alpha(x) \beta(y) \geq 1 \Rightarrow \zeta(\psi(d(T x, T y)), \psi(m(x, y))) \geq 0 \tag{3.12}
\end{equation*}
$$

hold for all $x, y \in X$, where
$m(x, y)=\max \left\{d(y, T y) \frac{1+d(x, T x)}{1+d(x, y)}, \frac{d(x, T x) d(x, T y)+d(y, T y) d(y, T x)}{d(x, T y)+d(y, T x)}\right\}$.
From now on, let (X, d) be a metric space and let $\alpha, \beta: X \rightarrow[0, \infty)$ be functions, $\psi \in \Psi$ and $\zeta \in Z$.

Theorem 3.5. Let (X, d) be a complete metric space, and let $T: X \rightarrow X$ be a generalized rational (α, β, Z) - contraction mapping with respect to ζ. Suppose that $\alpha\left(x_{0}\right) \geq 1$ and $\beta\left(x_{0}\right) \geq 1$, where $x_{0} \in X$. Assume that either
(1) T is continuous or
(2) if $\left\{x_{n}\right\} \subset X$ is a sequence such that $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$ and for all $n=1,2,3, \ldots$,

$$
\begin{equation*}
\beta\left(x_{n}\right) \geq 1 . \tag{3.13}
\end{equation*}
$$

If $T: X \rightarrow X$ is cyclic (α, β)-admissible, then T has a fixed point in X. Further if $\alpha(x) \beta(y) \geq 1$ for all fixed points x, y of T, then T has a unique fixed point.

Proof. Let $x_{0} \in X$ be a point such that $\alpha\left(x_{0}\right) \geq 1$ and $\beta\left(x_{0}\right) \geq 1$. Define a sequence $\left\{x_{n}\right\} \subset X$ by $x_{n+1}=T x_{n}$ for all $n=0,1,2, \ldots$. If $x_{n}=x_{n_{0}+1}$ for some $n_{0} \in \mathbb{N}$, then $x_{n_{0}}$ is a fixed point of T, and proof is completed. Assume that $x_{n} \neq x_{n+1}$ for all $n=0,1,2, \ldots$. Since T is cyclic (α, β)-admissible and $\alpha\left(x_{0}\right) \geq 1, \beta\left(x_{1}\right)=\beta\left(T x_{0}\right) \geq 1$, we have $\alpha\left(x_{2}\right)=\alpha\left(T x_{1}\right) \geq 1$. By continuing this process, we have $\alpha\left(x_{2 n}\right) \geq 1$ and $\beta\left(x_{2 n+1}\right) \geq 1$ for all $n=0,1,2, \ldots$. Again, since T is cyclic (α, β)-admissible and $\beta\left(x_{0}\right) \geq 1, \alpha\left(x_{1}\right)=\alpha\left(T x_{0}\right) \geq 1$ and $\beta\left(x_{2}\right)=\beta\left(T x_{1}\right) \geq 1$.

Recursively, we obtain that

$$
\beta\left(x_{2 n}\right) \geq 1 \quad \text { and } \quad \alpha\left(x_{2 n+1}\right) \geq 1
$$

for all $n=0,1,2, \ldots$. Hence,

$$
\alpha\left(x_{n}\right) \geq 1 \quad \text { and } \quad \beta\left(x_{n}\right) \geq 1
$$

for all $n=0,1,2, \ldots$, and hence

$$
\alpha\left(x_{n-1}\right) \beta\left(x_{n}\right) \geq 1 \text { for all } n=0,1,2, \ldots
$$

Now for all $n=1,2,3, \ldots$,

$$
\begin{align*}
m\left(x_{n-1}, x_{n}\right)= & \max \left\{d\left(x_{n}, T x_{n}\right) \frac{1+d\left(x_{n-1}, T x_{n-1}\right)}{1+d\left(x_{n-1}, x_{n}\right)},\right. \\
& \left.\frac{d\left(x_{n-1}, T x_{n-1}\right) d\left(x_{n-1}, T x_{n}\right)+d\left(x_{n}, T x_{n}\right) d\left(x_{n}, T x_{n-1}\right)}{d\left(x_{n-1}, T x_{n}\right)+d\left(x_{n}, T x_{n-1}\right)}\right\} \\
= & \max \left\{d\left(x_{n}, x_{n+1}\right) \frac{1+d\left(x_{n-1}, x_{n}\right)}{1+d\left(x_{n-1}, x_{n}\right)},\right. \\
& \left.\frac{d\left(x_{n-1}, x_{n}\right) d\left(x_{n-1}, x_{n+1}\right)+d\left(x_{n}, x_{n+1}\right) d\left(x_{n}, x_{n}\right)}{d\left(x_{n-1}, x_{n+1}\right)+d\left(x_{n}, x_{n}\right)}\right\} \\
= & \max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n-1}, x_{n}\right)\right\} . \tag{3.14}
\end{align*}
$$

It follows from (3.12) and (3.14), we have

$$
\begin{align*}
0 & \leq \zeta\left(\psi\left(d\left(T x_{n-1}, T x_{n}\right)\right), \psi\left(m\left(x_{n-1}, x_{n}\right)\right)\right) \\
& =\zeta\left(\psi\left(d\left(x_{n}, x_{n+1}\right)\right), \psi\left(\max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n-1}, x_{n}\right)\right\}\right)\right) \\
& <\psi\left(\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\}\right)-\psi\left(d\left(x_{n}, x_{n+1}\right)\right) . \tag{3.15}
\end{align*}
$$

Consequently, we obtain that for all $n=1,2,3, \ldots$,

$$
\psi\left(d\left(x_{n}, x_{n+1}\right)\right)<\psi\left(\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\}\right) .
$$

If $\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\}=d\left(x_{n}, x_{n+1}\right)$ for some n, then

$$
\psi\left(d\left(x_{n}, x_{n+1}\right)\right)<\psi\left(d\left(x_{n}, x_{n+1}\right)\right),
$$

which is a contradiction. Hence $\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\}=d\left(x_{n-1}, x_{n}\right)$ for all $n=1,2,3 \ldots$ and hence from (3.15)

$$
\begin{align*}
0 & \leq \zeta\left(\psi\left(d\left(x_{n}, x_{n+1}\right)\right), \psi\left(d\left(x_{n-1}, x_{n}\right)\right)\right) \\
& <\psi\left(d\left(x_{n-1}, x_{n}\right)\right)-\psi\left(d\left(x_{n}, x_{n+1}\right)\right), \tag{3.16}
\end{align*}
$$

which implies

$$
\psi\left(d\left(x_{n}, x_{n+1}\right)\right)<\psi\left(d\left(x_{n-1}, x_{n}\right)\right)
$$

for all $n=1,2,3, \ldots$. Since $\left\{\psi\left(d\left(x_{n-1}, x_{n}\right)\right)\right\}$ is decreasing and bounded from below by 0 , there exists $r \geq 0$ such that

$$
\lim _{n \rightarrow \infty} \psi\left(d\left(x_{n}, x_{n-1}\right)\right)=r .
$$

Now, we show that $\lim _{n \rightarrow \infty} \psi\left(d\left(x_{n}, x_{n-1}\right)\right)=0$. On the contrary, assume that $r>0$. Let $t_{n}=\psi\left(d\left(x_{n}, x_{n+1}\right)\right)$ and $s_{n}=\psi\left(d\left(x_{n-1}, x_{n}\right)\right)$, for all $n=$ $1,2,3, \ldots$. Then, $\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} t_{n}=r$. From condition (ζ_{3}) we have

$$
0 \leq \limsup _{n \rightarrow \infty} \zeta\left(\psi\left(d\left(x_{n}, x_{n+1}\right)\right), \psi\left(d\left(x_{n-1}, x_{n}\right)\right)\right)<0
$$

which is a contradiction. Hence, we have $r=0$. Since $\psi \in \Psi$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n-1}\right)=0 \tag{3.17}
\end{equation*}
$$

We now show that $\left\{x_{n}\right\}$ is a Cauchy sequence. On contrary, let $\left\{x_{n}\right\}$ be not a Cauchy sequence. Then there exists $\epsilon>0$ such that, for all $k>0$ there exists $m(k)>n(k)>k$ with

$$
d\left(x_{m_{(k)}}, x_{n_{(k)}}\right) \geq \epsilon \quad \text { and } \quad d\left(x_{m_{(k)}-1}, x_{n_{(k)}}\right)<\epsilon
$$

Then, we have

$$
\begin{aligned}
\epsilon & \leq d\left(x_{m_{(k)}}, x_{n_{(k)}}\right) \\
& \leq d\left(x_{m_{(k)}}, x_{m_{(k)}-1}\right)+d\left(x_{m_{(k)}-1}, x_{n_{(k)}}\right) \\
& <d\left(x_{m_{(k)}}, x_{m_{(k)}-1}\right)+\epsilon .
\end{aligned}
$$

Letting $k \rightarrow \infty$ in above inequality, we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{m_{(k)}}, x_{n_{(k)}}\right)=\epsilon \tag{3.18}
\end{equation*}
$$

By using (3.17) and (3.18), we obtain

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{m_{(k)}+1}, x_{n_{(k)}+1}\right)=\epsilon . \tag{3.19}
\end{equation*}
$$

Since

$$
\begin{gathered}
\alpha\left(x_{n}\right) \geq 1 \quad \text { and } \quad \beta\left(x_{n}\right) \geq 1 \text { for all } n=1,2,3, \ldots, \\
\alpha\left(x_{m_{(k)}}\right) \beta\left(x_{n_{(k)}}\right) \geq 1, \text { for all } k=1,2,3, \ldots
\end{gathered}
$$

We deduce that

$$
\begin{aligned}
& m\left(x_{m_{(k)}}, x_{n_{(k)}}\right) \\
& =\max \left\{d\left(x_{n_{(k)}}, T x_{n_{(k)}}\right) \frac{1+d\left(x_{m_{(k)}}, T x_{m_{(k)}}\right)}{1+d\left(x_{m_{(k)}}, x_{n_{(k)}}\right)},\right. \\
& \left.\quad \frac{d\left(x_{m_{(k)}}, T x_{m_{(k)}}\right) d\left(x_{m_{(k)}}, T x_{n_{(k)}}\right)+d\left(x_{n_{(k)}}, T x_{n_{(k)}}\right) d\left(x_{n_{(k)},}, T x_{m_{(k)}}\right)}{d\left(x_{m_{(k)}}, T x_{n_{(k)}}\right)+d\left(x_{\left.n_{(k)}\right)} T x_{m_{(k)}}\right)}\right\} \\
& =\max \left\{d \left(x_{n_{(k)}}, x_{n_{(k)}+1} \frac{1+d\left(x_{m_{(k)}}, x_{m_{(k)}+1}\right.}{1+d\left(x_{m_{(k)}}, x_{\left.n_{(k)}\right)}\right)},\right.\right. \\
& \left.\quad \frac{d\left(x_{m_{(k)},} x_{m_{(k)}+1}\right) d\left(x_{m_{(k)}}, x_{n_{(k)}+1}\right)+d\left(x_{n_{(k)},}, x_{n_{(k)}+1}\right) d\left(x_{n_{(k)}}, x_{m_{(k)}+1}\right.}{d\left(x_{m_{(k)}}, x_{n_{(k)}+1}\right)+d\left(x_{n_{(k)}}, x_{m_{(k)}+1}\right)}\right\} .
\end{aligned}
$$

Let $s_{k}=\psi\left(m\left(x_{m_{(k)}}, x_{n_{(k)}}\right)\right)$ and $t_{k}=\psi\left(d\left(x_{m_{(k)}+1}, x_{n_{(k)}+1}\right)\right)$. Then it follows from (3.17), (3.18) and (3.19), we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} s_{k}=\lim _{k \rightarrow \infty} t_{k}=\psi(\epsilon) \tag{3.20}
\end{equation*}
$$

Since $\psi(\epsilon)>0$, it follows from condition $\left(\zeta_{3}\right)$ that

$$
0 \leq \limsup _{n \rightarrow \infty} \zeta\left(\psi\left(d\left(x_{m_{(k)}+1}, x_{n_{(k)}+1}\right)\right), \psi\left(m\left(x_{m_{(k)}}, x_{n_{(k)}}\right)\right)\right)<0
$$

which is a contradiction. Then $\left\{x_{n}\right\}$ is a Cauchy sequence. It follows from the completeness of X that there exists

$$
\begin{equation*}
x^{*}=\lim _{n \rightarrow \infty} x_{n} \in X . \tag{3.21}
\end{equation*}
$$

If T is continuous, then $\lim _{n \rightarrow \infty} x_{n}=T x^{*}$ and so $x^{*}=T x^{*}$. Assume that (3.13) holds. Than $\alpha\left(x_{n}\right) \beta\left(x^{*}\right) \geq 1$ for all $n=0,1,2, \ldots$ We have

$$
\begin{aligned}
m\left(x_{n}, x^{*}\right)= & \max \left\{d\left(x^{*}, T x^{*}\right) \frac{1+d\left(x_{n}, T x_{n}\right)}{1+d\left(x_{n}, x^{*}\right)},\right. \\
& \left.\frac{d\left(x_{n}, T x_{n}\right) d\left(x_{n}, T x^{*}\right)+d\left(x^{*}, T x^{*}\right) d\left(x^{*}, T x_{n}\right)}{d\left(x_{n}, T x^{*}\right)+d\left(x^{*}, T x_{n}\right)}\right\} \\
= & \max \left\{d\left(x^{*}, x_{n}\right) \frac{1+d\left(x_{n}, x_{n+1}\right)}{1+d\left(x_{n}, x^{*}\right)}, d\left(x^{*}, T x^{*}\right)\right\} .
\end{aligned}
$$

Let $s_{n}:=\psi\left(m\left(x_{n}, x^{*}\right)\right)$ and $t_{n}:=\psi\left(d\left(x_{n+1}, T x^{*}\right)\right)$. Then, $\lim _{n \rightarrow \infty} s_{n}=$ $\lim _{n \rightarrow \infty} t_{n}=\psi\left(d\left(x^{*}, T x^{*}\right)\right)$. Assume that $\psi\left(d\left(x^{*}, T x^{*}\right)\right)>0$. Then

$$
\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} t_{n}>0
$$

it follows from $\left(\zeta_{3}\right)$ that

$$
0 \leq \lim _{n \rightarrow \infty} \sup \zeta\left(\psi\left(d\left(x_{n+1}, T x^{*}\right)\right), \psi\left(m\left(x_{n}, x^{*}\right)\right)\right)<0
$$

which is a contradiction.
Thus $\psi\left(d\left(x^{*}, T x^{*}\right)\right)=0$. From $\left(\psi_{2}\right)$ we have $d\left(x^{*}, T x^{*}\right)=0$. Hence x^{*} is a fixed point of T.

We now show that the fixed point of T is unique under assumption that $\alpha(x) \beta(y) \geq 1$ for all fixed points x, y of T.

Let y^{*} be another fixed point of T. Then $\alpha\left(x^{*}\right) \beta\left(y^{*}\right) \geq 1$. Hence from (3.12), we have

$$
\begin{align*}
0 & \leq \zeta\left(\psi\left(d\left(T x^{*}, T y^{*}\right)\right), \psi\left(m\left(x^{*}, y^{*}\right)\right)\right) \\
& =\zeta\left(\psi\left(d\left(x^{*}, y^{*}\right)\right), \psi\left(d\left(x^{*}, y^{*}\right)\right)\right) . \tag{3.22}
\end{align*}
$$

If $d\left(x^{*}, y^{*}\right)>0$, then $\psi\left(d\left(x^{*}, y^{*}\right)\right)>0$. Hence it follows from (3.22) and (ζ_{2}) that

$$
\begin{aligned}
0 & \leq \zeta\left(\psi\left(d\left(x^{*}, y^{*}\right)\right), \psi\left(d\left(x^{*}, y^{*}\right)\right)\right) \\
& <\psi\left(d\left(x^{*}, y^{*}\right)\right)-\psi\left(d\left(x^{*}, y^{*}\right)\right)=0,
\end{aligned}
$$

which is a contradiction. Hence $d\left(x^{*}, y^{*}\right)=0$, and hence T has a unique fixed point.

Corollary 3.6. Let (X, d) be a complete metric space and let $T: X \rightarrow X$ be a generalized rational (α, β, Z)-contraction mapping with respect to ζ such that

$$
\zeta(d(T x, T y), m(x, y)) \geq 0
$$

for all $x, y \in X$ with $\alpha(x) \beta(y) \geq 1$. Suppose that $\alpha\left(x_{0}\right) \geq 1$ and $\beta\left(x_{0}\right) \geq 1$, where $x_{0} \in X$. Assume that either
(1) T is continuous or
(2) if $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$ and $\beta\left(x_{n}\right) \geq$ 1 for all n, then $\beta(x) \geq 1$.
If $T: X \rightarrow X$ is cyclic (α, β)-admissible, then T has a fixed point in X. Further if $\alpha(x) \beta(y) \geq 1$ for all fixed points x, y of T, then T has a unique fixed point.

Note that the continuity of the mapping T in Theorem 3.2 can be dropped if we replace condition (3) by a suitable one as in the following result.

Corollary 3.7. Let (X, d) be a complete metric space, $T: X \rightarrow X$ be a mapping and $\alpha, \beta: X \rightarrow[0,+\infty)$ be two functions. Suppose that the following conditions hold:
(1) T is a rational (α, β, Z)-contraction mapping.
(2) There exists an element $x_{0} \in X$ such that $\alpha\left(x_{0}\right) \geq 1$ and $\beta\left(x_{0}\right) \geq 1$.
(3) If $\left\{x_{n}\right\}$ is a sequence in X converges to $x \in X$ with $\alpha\left(x_{n}\right) \geq 1$ (or $\beta\left(x_{n}\right) \geq 1$) for all $n \in \mathbb{N}$, then $\beta(x) \geq 1$ (or $\alpha(x) \geq 1$) for all $n \in \mathbb{N}$.
Then T has a fixed point.
By taking the function $\beta: X \rightarrow[0,+\infty)$ to be α in Theorem 3.2, we get the following Corollary:

Corollary 3.8. Let (X, d) be a complete metric space, $T: X \rightarrow X$ be a mapping and $\alpha: X \rightarrow[0,+\infty)$ be a function. Suppose that the following conditions hold:
(1) There exists $\zeta \in Z$ such that if $x, y \in X$ with $\alpha(x) \alpha(y) \geq 1$, then $\zeta(d(T x, T y), M(x, y)) \geq 0$, where

$$
M(x, y)=\max \left\{d(x, y), \frac{d(x, T x) d(y, T y)}{1+d(x, y)}, \frac{d(x, T x) d(y, T y)}{1+d(T x, T y)}\right\} .
$$

(2) If $x \in X$ with $\alpha(x) \geq 1$, then $\alpha(T x) \geq 1$.
(3) There exists $x_{0} \in X$ such that $\alpha\left(x_{0}\right) \geq 1$.
(4) If $\left\{x_{n}\right\}$ is a sequence in X converges to $x \in X$ with $\alpha\left(x_{n}\right) \geq 1$ for all $n \in \mathbb{N}$, then $\alpha(x) \geq 1$ for all $n \in \mathbb{N}$.

Then T has a fixed point.

Example 3.9. Let $X=[-1,1]$. Define $d: X \times X \rightarrow \mathbb{R}$ by $d(x, y)=|x-y|$. Also, define the mapping $T: X \rightarrow X$ the two functions $\alpha, \beta: X \rightarrow[0, \infty)$ and the function $\zeta:[0,+\infty) \times[0, \infty) \rightarrow \mathbb{R}$ as follows:

$$
\begin{gathered}
T(x)= \begin{cases}\frac{x}{4}, & \text { if } \quad x \in[0,1], \\
1 / 4, & \text { otherwise },\end{cases} \\
\alpha(x)= \begin{cases}\frac{x+3}{2}, & \text { if } x \in[0,1], \\
0, & \text { otherwise },\end{cases} \\
\beta(x)= \begin{cases}\frac{x+5}{4}, & \text { if } x \in[0,1], \\
0, & \text { otherwise },\end{cases} \\
\zeta(t, s)=\frac{s}{s+1}-t .
\end{gathered}
$$

Then, we have the following:
(1) (X, d) is a complete metric space.
(2) ζ is a simulation function.
(3) There exists $x_{0} \in X$ such that $\alpha\left(x_{0}\right) \geq 1$ and $\beta\left(x_{0}\right) \geq 1$.
(4) T is continuous.
(5) T is cyclic (α, β)-admissible mapping.
(6) For $x, y \in X$ with $\alpha(x) \beta(y) \geq 1$, we have

$$
\zeta(d(T x, T y), M(x, y)) \geq 0
$$

where

$$
M(x, y)=\max \left\{d(x, y), \frac{d(x, T x) d(y, T y)}{1+d(x, y)}, \frac{d(x, T x) d(y, T y)}{1+d(T x, T y)}\right\} .
$$

Indeed, the proof of (1), (2), (3) and (4) are clear. To prove (5), let $x \in X$. If $\alpha(x) \geq 1$ then $x \in[0,1]$. So,

$$
\beta(T x)=\beta(x / 4)=\frac{(x / 4)+5}{4}=\frac{x+20}{16} \geq 1 .
$$

If $\beta(x) \geq 1$, then $x \in[0,1]$. So,

$$
\alpha(T x)=\alpha(x / 4)=\frac{(x / 4)+3}{2}=\frac{x+12}{8} \geq 1 .
$$

So, T is cyclic (α, β)-admissible. To prove (6), let $x, y \in X$ with $\alpha(x) \beta(x) \geq 1$. Then $x, y \in[0,1]$, therefore, we have

$$
\begin{aligned}
\zeta(d(T x, T y), M(x, y)) & =\frac{M(x, y)}{1+M(x, y)}-d(T x, T y) \\
& \geq \frac{d(x, y)}{1+d(x, y)}-|T(x)-T(y)| \\
& =\frac{d(x, y)}{1+d(x, y)}-|x / 4-y / 4| \\
& =\frac{|x-y|}{1+|x-y|}-|x / 4-y / 4| \\
& =\frac{3|x-y|-|x-y|^{2}}{4[1+|x-y|]} \geq 0 .
\end{aligned}
$$

So, T is a rational (α, β, Z)-contraction mapping. Hence this satisfies all the conditions of Theorem 3.2. So T has fixed point. Here 0 is the fixed point of T.

4. Conclusion

In this paper, we establish some unique fixed point results for rational (α, β, Z)-contraction mapping and generalized rational (α, β, Z)-contraction mapping in the setting of complete metric space via a cyclic (α, β)-admissible mapping imbedded in simulation function. Our results extend and generalize several results from the existing literature.
Acknowledgements: The authors are thankful to the learned referee for his/her deep observations and their suggestions, which greatly helped us to improve the paper significantly.

References

[1] S. Alizadeh, F. Moradlou and P. Salimi, Some fixed point results for $(\alpha, \beta)-(\psi, \phi)-$ contractive mappings, Filomat, 28(3) (2014), 635-647.
[2] H.H. Alsulami, E. Karapinar, F. Khojasteh and A.F. Roldān-Lōpez-de-Hierro, A proposal to the study of contractions in quasi-metric spaces, Discrete Dyna. Nature and Soc., (2014) Article ID 269286, 1-10.
[3] A.H. Ansari, J. Nantadilok and M.S. Khan, Best proximity points of generalized cyclic weak (F, ψ, φ)-contractions in ordered metric spaces, Nonlinear Funct. Anal. Appl., 25(1) (2020), 55-67.
[4] H. Argoubi, B. Samet and C. Vetro, Nonlinear contractions involving simulation functions in a metric space with a partial order, J. Nonlinear Sci. Appl., 8 (2015), 1082-1094.
[5] H. Aydi and A. Felhi, Fixed points in modular spaces via α-admissible mappings and simulation functions, J. Nonlinear Sci. Appl., 9 (2016), 3686-3701.
[6] H. Aydi, A. Felhi and S. Sahmim, On common fixed points for (α, ψ)-contractions and generalized cyclic contractions in b-metric like spaces and consequences, J. Nonlinear Sci. Appl., 9 (2016), 2492-2510.
[7] H. Aydi, E. Karapinar and V. Rakoćević, Non unique fixed point theorem on b-metric spaces via simulation functions, Jordan J. Math. Stat., 12 (2019), 265-288.
[8] M. Bousselsal and Z. Mostefaoui, Some common fixed point results in partial metric spaces for generalized rational type contraction mappings, Nonlinear Funct. Anal. Appl., 20(1) (2015), 43-54.
[9] Seong-Hoon Cho, Fixed point theorem for $(\alpha, \beta)-z$ contractions in metric spaces, Int. J. Math. Anal., 13(4) (2019), 161-174.
[10] A. Das, B. Hazarika, H.K. Nashine and J.K. Kim, ψ-coupled fixed point theorem via simulation functions in complete partially ordered metric space and its applications, Nonlinear Funct. Anal. Appl., 26(2) (2021), 273-288.
[11] E. Karapinar Fixed points results via simulation functions, Filomat, 30 (2016), 23432350.
[12] E. Karapinar and F. Khojasteh, An approach to best proximity point results via simulation functions, J. Fixed Point Theorey Appl., 19 (2017), 1983-1995.
[13] E. Karapinar and B. Samet, Generalized $\alpha-\psi$ contractive type mappings and related fixed point theorems with applications, Abst. Appl. Anal., 2012 (2012), 17 pages.
[14] F. Khojasteh, S. Shukla and S. Radenovic, A new approach to the study of fixed point theory for simulation function, Filomat, 29(6) (2015), 1189-1194.
[15] H.K. Nashine, R.W. Ibrahim, Y.J. Cho and J.K. Kim, Fixed point theorems for the modified simulation function and applications to fractional economics systems, Nonlinear Funct. Anal. Appl., 26 (1) (2021), 137-155.
[16] H. Qawagneh, M.S. Noorani, W. Shatanawi, K. Abodayeh and H. Alsamir, Fixed point for mappings under contractive condition based on simulation functions and cyclic (α, β)-admissibility, J. Math. Anal., 9(1) (2018), 38-51.
[17] A.F. Roldān-Lōpez-de-Hierro, E. Karapinar, C. Roldān-Lōpez-de-Hierro and J. Martinez-Moreno, Coincidence point theorems on metric spaces via simulation functions, J. Comput. Appl. Math., 275 (2015), 345-355.
[18] B. Samet, C. Vetro and P. Vetro, Fixed point theorems for $(\alpha-\psi)$-contractive type mappings, Nonlinear Anal., 75 (2012), 2154-2165.

[^0]: ${ }^{0}$ Received November 20, 2021. Revised May 17, 2022. Accepted June 21, 2022.
 ${ }^{0} 2020$ Mathematics Subject Classification: 47H10, 54 H 25.
 ${ }^{0}$ Keywords: Fixed point, metric space, simulation function, rational (α, β, Z)-contraction mapping, cyclic (α, β)-admissible mapping.
 ${ }^{0}$ Corresponding author: Urmila Mishra(mishra.urmila@gmail.com),
 H. G. Hyun(hyunhg8285@kyungnam.ac.kr).

