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1. Introduction

Recently, Samet et al. [18] proved a generalization of Banach contraction
principle by introducing the notion of α − ψ contractive type mappings and
α-admissible mappings. This concept is further generalized by many authors
([3, 5, 6, 13]) by introducing generalized α− ψ contractive type mapping and
α-admissible mapping in different metric spaces.

The concept of cyclic (α, β)-admissible mapping was introduced by Alizadeh
et al. [1] by generalizing the concept of α-admissible mapping of Samet et
al. [18]. They proved various fixed point theorems in the setting of metric
spaces. Also, Khojasteh et al. [14] introduced the notion of z-contraction
by defining the concept of simulation function. The concept of Khojasteh et
al. [14] is further modified by Argoubi et al. [4]. They proved the existence
of common fixed point results of a pair of nonlinear operators satisfying a
certain contractive condition involving simulation functions, in the setting of
ordered metric spaces. Afterward, several authors discussed the existence of
fixed point by using the simulation function, for instance see ([2, 7, 9, 10, 11,
12, 15, 16, 17]).

In this paper, we consider rational (α, β, Z) contraction mappings under
simulation functions involving a cyclic (α, β)-admissibility in a metric space.
For this kind of contractions, we establish some fixed point results. Our results
are generalization and extension of the results [9] and [16]. For more results
of rational type contractions and Z-contraction we refer the paper in ([7, 8, 9,
11, 12, 16, 17]) and references cited therein.

Now we will give some basic definitions and results in metric spaces before
presenting our main results.

2. Preliminaries

Alizadeh et al. [1] introduced the notion of cyclic (α, β)-admissible mapping
which is defined as follows:

Definition 2.1. ([1]) Let X be a nonempty set, f be a self-mapping on X
and α, β : X → [0,+∞) be two mappings. We say that f is a cyclic (α, β)-
admissible mapping if x ∈ X with

α(x) ≥ 1⇒ β(f(x)) ≥ 1

and

β(x) ≥ 1⇒ α(f(x)) ≥ 1. (2.1)

In 2015, Khojasteh et al. [14] introduced the class of simulation functions
as given below and by using this definition they proved the following theorem:
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Definition 2.2. Let ζ : [0,∞)× [0,∞) → R be a mapping. Then ζ is called
a simulation function if it satisfies the following conditions:

(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s− t for all t, s > 0;
(ζ3) if {tn} and {sn} are sequences in (0,∞) such that

limn→∞ tn = limn→∞ sn = l > 0, then lim supn→∞ ζ(tn, sn) < 0.

Theorem 2.3. ([14]) Let (X, d) be a complete metric space and T : X → X
be a Z-contraction mapping with respect to a simulation function ζ, that is,

ζ(d(Tx, Ty), d(x, y)) ≥ 0,

for all x, y ∈ X. Then T has a unique fixed point.

It is worth mentioning that the Banach contraction is an example of Z-
contraction by defining ζ : [0,∞) × [0,∞) → R via ζ(t, s) = γs − t for all
s, t ∈ [0,∞), where γ ∈ [0, 1).

Argoubi et al.[4] modified the definition of [14] as follows:

Definition 2.4. A simulation function is a function ζ : [0,∞) × [0,∞) → R
that satisfies the following conditions

(1) ζ(t, s) < s− t for all t, s > 0;
(2) if {tn} and {sn} are sequences in (0,∞) such that

limn→∞ tn = limn→∞ sn = l > 0, then lim supn→∞ ζ(tn, sn) < 0.

It is clear that any simulation function in the sense of Khojasteh et al. [14]
(Definition 2.2) is also a simulation function in the sense of Argoubi et al. [4]
(Definition 2.4). The following example is a simulation function in the sense
of Argoubi et al. [4].

Example 2.5. Define a function ζ : [0,∞)× [0,∞)→ R by

ζ(t, s) =

{
1, if (s, t)= (0, 0);
λs− t, if otherwise,

where λ ∈ (0, 1). Then ζ is a simulation function.

3. Main results

Now, we are ready to prove our result with the following definitions.

Definition 3.1. Let (X, d) be a complete metric space, T : X → X be a
mapping and α, β : X → [0,∞) be two functions. Then T is said to be a
rational (α, β, Z)-contraction mapping if it satisfies the following conditions:

(1) T is cyclic (α, β)-admissible,
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(2) there exists a simulation function ζ ∈ Z such that

α(x)β(y) ≥ 1⇒ ζ(d(Tx, Ty),M(x, y)) ≥ 0, (3.1)

holds for all x, y ∈ X, where

M(x, y) = max
{
d(x, y),

d(x, Tx)d(y, Ty)

1 + d(x, y)
,
d(x, Tx)d(y, Ty)

1 + d(Tx, Ty)

}
.

Theorem 3.2. Let (X, d) be a complete metric space, T : X → X be a
mapping and α, β : X → [0,∞) be two functions. Suppose that the following
conditions hold:

(1) T is a rational (α, β, Z)-contraction mapping.
(2) There exists an element x0 ∈ X such that α(x0) ≥ 1 and β(x0) ≥ 1.
(3) T is continuous.

Then T has a fixed point u ∈ X.

Proof. Assume that there exists x0 ∈ X such that α(x0) ≥ 1. We divide our
proof into the following three steps:

Step 1. Define a sequence {xn} in X such that xn+1 = Txn for all n ∈
N ∪ {0}. If xn = xn+1 for all n ∈ N ∪ {0}, then T has a fixed point and the
proof is finished. Hence, we assume that xn 6= xn+1 for some n ∈ N ∪ {0},
that is d(xn, xn+1) 6= 0 for n ∈ N ∪ {0}. Since T is a cyclic (α, β)-admissible
mapping, α(x0) ≥ 1 and β(x0) ≥ 1,

β(x1) = β(Tx0) ≥ 1.

It implies that

α(x2) = α(Tx1) ≥ 1.

And also, we have

α(x1) = α(Tx0) ≥ 1.

It implies that

β(x2) = β(Tx1) ≥ 1.

By the continuing the above process, we have α(xn) ≥ 1 and β(xn) ≥ 1, for
all n ∈ N ∪ {0}. Thus α(xn)β(xn+1) ≥ 1, for all n ∈ N ∪ {0}. Therefore, we
get

ζ(d(Txn, Txn+1),M(xn, xn+1)) ≥ 0 (3.2)
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for all n ∈ N, where

M(xn, xn+1) = max
{
d(xn, xn+1),

d(xn, Txn)d(xn+1, Txn+1)

1 + d(xn, xn+1)
,

d(xn, Txn)d(xn+1, Txn+1)

1 + d(Txn, Txn+1)

}
= max

{
d(xn, xn+1),

d(xn, xn+1)d(xn+1, xn+2)

1 + d(xn, xn+1)
,

d(xn, xn+1)d(xn+1, xn+2)

1 + d(xn+1, xn+2)

}
= max{d(xn, xn+1), d(xn+1, xn+2)}. (3.3)

It follows that

ζ(d(xn+1, xn+2),max{d(xn, xn+1), d(xn+1, xn+2)}) ≥ 0. (3.4)

(ζ2) of Definition 2.2 implies that

0 ≤ ζ(d(xn+1, xn+2),max{d(xn, xn+1), d(xn+1, xn+2)})
< max{d(xn, xn+1), d(xn+1, xn+2)} − d(xn+1, xn+2).

Thus, we conclude that

d(xn+1, xn+2) < max{d(xn, xn+1), d(xn+1, xn+2)} (3.5)

for all n ≥ 1. From (3.5), we have

d(xn+1, xn+2) < d(xn, xn+1) for all n ≥ 1. (3.6)

It follows that the sequence {d(xn, xn+1)} is nonincreasing. Therefore, there
exists r ≥ 0 such that

lim
n→∞

d(xn, xn+1) = r.

Note that if r 6= 0, that is r > 0, then by (ζ2) of Definition 2.2, we have

0 ≤ lim sup
n→∞

ζ(d(xn, xn+1), d(xn+1, xn+2)) < 0,

which is a contradiction. This implies that r = 0, that is

lim
n→∞

d(xn, xn+1) = 0. (3.7)

Step 2. Now, we prove that {xn} is a Cauchy sequence. Suppose to the
contrary, that is, {xn} is not a Cauchy sequence. Then there exists ε > 0 and
two subsequences {xm(k)

} and {xn(k)
} of {xn} with m(k) > n(k) > k and m(k)

is the smallest index in N such that

d(xn(k)
, xm(k)

) ≥ ε.
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So, d(xn(k)
, xm(k)−1

) < ε. Triangular inequality implies that

ε ≤ d(xn(k)
, xm(k)

)

≤ d(xn(k)
, xm(k)−1

) + d(xm(k)−1
, xm(k)

)

< ε+ d(xm(k)−1
, xm(k)

).

Taking k →∞ in the above inequality and using (3.7), we get

lim
k→∞

d(xn(k)
, xm(k)

) = ε. (3.8)

Again, by triangular inequality, we have

d(xn(k)−1
, xm(k)−1

) ≤ d(xn(k)−1
, xnk

) + d(xn(k)
, xm(k)

)

+d(xm(k)
, xm(k)−1

)

≤ d(xn(k)−1
, xnk

) + d(xn(k)
, xn(k)−1

)

+d(xn(k)−1
, xm(k)

) + d(xm(k)
, xm(k)−1

)

≤ 2d(xn(k)
, xn(k)−1

) + d(xn(k)−1
, xm(k)−1

)

+d(xm(k)−1
, xm(k)

) + d(xm(k)
, xm(k)−1

)

≤ 2d(xn(k)
, xn(k)−1

) + d(xm(k)−1
, xn(k)−1

)

+2d(xm(k)−1
, xm(k)

).

Taking k →∞ in the above inequality and using (3.7) and (3.8), we get

lim
k→∞

d(xn(k)
, xm(k)

) = lim
k→∞

d(xn(k)−1, xm(k)−1) (3.9)

= ε.

Since α(xn) ≥ 1 and β(xn) ≥ 1 for all n = 1, 2, 3, ..., we conclude that

α(xn(k)−1)β(xm(k)−1) ≥ 1.

Since T is a rational (α, β, Z)−contraction, we have

ζ(d(Txn(k)−1, Txm(k)−1),M(xn(k)−1, xm(k)−1)) ≥ 0 (3.10)

for all x, y ∈ X, where
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M(xn(k)−1
, xm(k)−1

) = max
{
d(xn(k)−1

, xm(k)−1
),

d(xn(k)−1
, Txn(k)−1

)d(xm(k)−1
, Txm(k)−1

)

1 + d(xn(k)−1
, xm(k)−1

)
,

d(xn(k)−1
, Txn(k)−1

)d(xm(k)−1
, Txm(k)−1

)

1 + d(Txn(k)−1
, Txm(k)−1

)

}
= max

{
d(xn(k)−1

, xm(k)−1
),

d(xn(k)−1
, xn(k)

)d(xm(k)−1
, xm(k)

)

1 + d(xn(k)−1
, xm(k)−1

)
,

d(xn(k)−1
, xn(k)

)d(xm(k)−1
, xm(k)

)

1 + d(xn(k)
, xm(k)

)

}
= max{d(xn(k)−1

, xm(k)−1
), d(xn(k)−1

, xn(k)
)}.

By (3.7) and (3.9), we conclude that

lim
n→∞

M(xn(k)−1
, xm(k)−1

) = ε. (3.11)

Note that by (ζ2) and (ζ3) of Definition 2.2, implies that

0 ≤ lim sup ζ(d(Txn(k)−1
, Txm(k)−1

),M(xn(k)−1
, xm(k)−1

)) < 0,

which is a contradiction. Thus {xn} is a Cauchy sequence.

Step 3. Finally, we prove that T has a fixed point. Since {xn} is a Cauchy
sequence in the complete metric space X, there exists a x∗ ∈ X such that
xn → x∗. The continuity of T implies that Tx2n → Tx∗. Since x2n+1 = Tx2n
and x2n+1 → x∗, by uniqueness of limit, we get Tx∗ = x∗. So x∗ is a fixed
point of T . This completes the proof. �

We begin our next result with the following definitions and notations.

Definition 3.3. We denote by Ψ the family of all nondecreasing functions
ψ : [0,∞)→ [0,∞) such that

(Ψ1) ψ is a continuous;
(Ψ2) ψ

−1({0}) = 0.

Definition 3.4. Let (X, d) be a complete metric space, T : X → X be a
mapping and α, β : X → [0,∞) be two functions. Then T is said to be a
generalized rational (α, β, Z)-contraction mapping if T satisfies the following
conditions:

(1) T is a cyclic (α, β)-admissible,
(2) there exists a simulation function ζ ∈ Z such that
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α(x)β(y) ≥ 1⇒ ζ(ψ(d(Tx, Ty)), ψ(m(x, y))) ≥ 0 (3.12)

hold for all x, y ∈ X, where

m(x, y) = max
{
d(y, Ty)

1 + d(x, Tx)

1 + d(x, y)
,
d(x, Tx)d(x, Ty) + d(y, Ty)d(y, Tx)

d(x, Ty) + d(y, Tx)

}
.

From now on, let (X, d) be a metric space and let α, β : X → [0,∞) be
functions, ψ ∈ Ψ and ζ ∈ Z.

Theorem 3.5. Let (X, d) be a complete metric space, and let T : X → X be a
generalized rational (α, β, Z)- contraction mapping with respect to ζ. Suppose
that α(x0) ≥ 1 and β(x0) ≥ 1, where x0 ∈ X. Assume that either

(1) T is continuous or
(2) if {xn} ⊂ X is a sequence such that limn→∞ d(xn, x) = 0 and for all

n = 1, 2, 3, ...,

β(xn) ≥ 1. (3.13)

If T : X → X is cyclic (α, β)-admissible, then T has a fixed point in X.
Further if α(x)β(y) ≥ 1 for all fixed points x, y of T , then T has a unique
fixed point.

Proof. Let x0 ∈ X be a point such that α(x0) ≥ 1 and β(x0) ≥ 1. Define a
sequence {xn} ⊂ X by xn+1 = Txn for all n = 0, 1, 2, .... If xn = xn0+1 for
some n0 ∈ N, then xn0 is a fixed point of T , and proof is completed. Assume
that xn 6= xn+1 for all n = 0, 1, 2, .... Since T is cyclic (α, β)-admissible and
α(x0) ≥ 1, β(x1) = β(Tx0) ≥ 1, we have α(x2) = α(Tx1) ≥ 1. By continuing
this process, we have α(x2n) ≥ 1 and β(x2n+1) ≥ 1 for all n = 0, 1, 2, ....
Again, since T is cyclic (α, β)-admissible and β(x0) ≥ 1, α(x1) = α(Tx0) ≥ 1
and β(x2) = β(Tx1) ≥ 1.

Recursively, we obtain that

β(x2n) ≥ 1 and α(x2n+1) ≥ 1

for all n = 0, 1, 2, .... Hence,

α(xn) ≥ 1 and β(xn) ≥ 1

for all n = 0, 1, 2, ..., and hence

α(xn−1)β(xn) ≥ 1 for all n = 0, 1, 2, ....
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Now for all n = 1, 2, 3, ...,

m(xn−1, xn) = max
{
d(xn, Txn)

1 + d(xn−1, Txn−1)

1 + d(xn−1, xn)
,

d(xn−1, Txn−1)d(xn−1, Txn)+d(xn, Txn)d(xn, Txn−1)

d(xn−1, Txn) + d(xn, Txn−1)

}
= max

{
d(xn, xn+1)

1 + d(xn−1, xn)

1 + d(xn−1, xn)
,

d(xn−1, xn)d(xn−1, xn+1) + d(xn, xn+1)d(xn, xn)

d(xn−1, xn+1) + d(xn, xn)

}
= max{d(xn, xn+1), d(xn−1, xn)}. (3.14)

It follows from (3.12) and (3.14), we have

0 ≤ ζ(ψ(d(Txn−1, Txn)), ψ(m(xn−1, xn)))

= ζ(ψ(d(xn, xn+1)), ψ(max{d(xn, xn+1), d(xn−1, xn)}))

< ψ(max{d(xn−1, xn), d(xn, xn+1)})− ψ(d(xn, xn+1)). (3.15)

Consequently, we obtain that for all n = 1, 2, 3, ...,

ψ(d(xn, xn+1)) < ψ(max{d(xn−1, xn), d(xn, xn+1)}).
If max{d(xn−1, xn), d(xn, xn+1)} = d(xn, xn+1) for some n, then

ψ(d(xn, xn+1)) < ψ(d(xn, xn+1)),

which is a contradiction. Hence max{d(xn−1, xn), d(xn, xn+1)} = d(xn−1, xn)
for all n = 1, 2, 3... and hence from (3.15)

0 ≤ ζ(ψ(d(xn, xn+1)), ψ(d(xn−1, xn)))

< ψ(d(xn−1, xn))− ψ(d(xn, xn+1)), (3.16)

which implies

ψ(d(xn, xn+1)) < ψ(d(xn−1, xn))

for all n = 1, 2, 3, .... Since {ψ(d(xn−1, xn))} is decreasing and bounded from
below by 0, there exists r ≥ 0 such that

lim
n→∞

ψ(d(xn, xn−1)) = r.

Now, we show that limn→∞ ψ(d(xn, xn−1)) = 0. On the contrary, assume
that r > 0. Let tn = ψ(d(xn, xn+1)) and sn = ψ(d(xn−1, xn)), for all n =
1, 2, 3, .... Then, limn→∞ sn = limn→∞ tn = r. From condition (ζ3) we have

0 ≤ lim sup
n→∞

ζ(ψ(d(xn, xn+1)), ψ(d(xn−1, xn))) < 0,
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which is a contradiction. Hence, we have r = 0. Since ψ ∈ Ψ,

lim
n→∞

d(xn, xn−1) = 0. (3.17)

We now show that {xn} is a Cauchy sequence. On contrary, let {xn} be
not a Cauchy sequence. Then there exists ε > 0 such that, for all k > 0 there
exists m(k) > n(k) > k with

d(xm(k)
, xn(k)

) ≥ ε and d(xm(k)−1, xn(k)
) < ε.

Then, we have

ε ≤ d(xm(k)
, xn(k)

)

≤ d(xm(k)
, xm(k)−1) + d(xm(k)−1, xn(k)

)

< d(xm(k)
, xm(k)−1) + ε.

Letting k →∞ in above inequality, we have

lim
k→∞

d(xm(k)
, xn(k)

) = ε. (3.18)

By using (3.17) and (3.18), we obtain

lim
k→∞

d(xm(k)+1, xn(k)+1) = ε. (3.19)

Since

α(xn) ≥ 1 and β(xn) ≥ 1 for all n = 1, 2, 3, ...,

α(xm(k)
)β(xn(k)

) ≥ 1, for all k = 1, 2, 3, ....

We deduce that

m(xm(k)
, xn(k)

)

= max
{
d(xn(k)

, Txn(k)
)
1 + d(xm(k)

, Txm(k)
)

1 + d(xm(k)
, xn(k)

)
,

d(xm(k)
, Txm(k)

)d(xm(k)
, Txn(k)

) + d(xn(k)
, Txn(k)

)d(xn(k)
, Txm(k)

)

d(xm(k)
, Txn(k)

) + d(xn(k)
, Txm(k)

)

}
= max

{
d(xn(k)

, xn(k)+1)
1 + d(xm(k)

, xm(k)+1)

1 + d(xm(k)
, xn(k)

)
,

d(xm(k)
, xm(k)+1)d(xm(k)

, xn(k)+1)+d(xn(k)
, xn(k)+1)d(xn(k)

, xm(k)+1)

d(xm(k)
, xn(k)+1) + d(xn(k)

, xm(k)+1)

}
.

Let sk = ψ(m(xm(k)
, xn(k)

)) and tk = ψ(d(xm(k)+1, xn(k)+1)). Then it follows

from (3.17), (3.18) and (3.19), we have

lim
k→∞

sk = lim
k→∞

tk = ψ(ε). (3.20)
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Since ψ(ε) > 0, it follows from condition (ζ3) that

0 ≤ lim sup
n→∞

ζ(ψ(d(xm(k)+1, xn(k)+1)), ψ(m(xm(k)
, xn(k)

))) < 0,

which is a contradiction. Then {xn} is a Cauchy sequence. It follows from the
completeness of X that there exists

x∗ = lim
n→∞

xn ∈ X. (3.21)

If T is continuous, then limn→∞ xn = Tx∗ and so x∗ = Tx∗. Assume that
(3.13) holds. Than α(xn)β(x∗) ≥ 1 for all n = 0, 1, 2, .... We have

m(xn, x
∗) = max

{
d(x∗, Tx∗)

1 + d(xn, Txn)

1 + d(xn, x∗)
,

d(xn, Txn)d(xn, Tx
∗) + d(x∗, Tx∗)d(x∗, Txn)

d(xn, Tx∗) + d(x∗, Txn)

}
= max

{
d(x∗, xn)

1 + d(xn, xn+1)

1 + d(xn, x∗)
, d(x∗, Tx∗)

}
.

Let sn := ψ(m(xn, x
∗)) and tn := ψ(d(xn+1, Tx

∗)). Then, limn→∞ sn =
limn→∞ tn = ψ(d(x∗, Tx∗)). Assume that ψ(d(x∗, Tx∗)) > 0. Then

lim
n→∞

sn = lim
n→∞

tn > 0,

it follows from (ζ3) that

0 ≤ lim
n→∞

sup ζ(ψ(d(xn+1, Tx
∗)), ψ(m(xn, x

∗))) < 0,

which is a contradiction.

Thus ψ(d(x∗, Tx∗)) = 0. From (ψ2) we have d(x∗, Tx∗) = 0. Hence x∗ is a
fixed point of T .

We now show that the fixed point of T is unique under assumption that
α(x)β(y) ≥ 1 for all fixed points x, y of T .

Let y∗ be another fixed point of T . Then α(x∗)β(y∗) ≥ 1. Hence from
(3.12), we have

0 ≤ ζ(ψ(d(Tx∗, T y∗)), ψ(m(x∗, y∗)))

= ζ(ψ(d(x∗, y∗)), ψ(d(x∗, y∗))). (3.22)

If d(x∗, y∗) > 0, then ψ(d(x∗, y∗)) > 0. Hence it follows from (3.22) and (ζ2)
that

0 ≤ ζ(ψ(d(x∗, y∗)), ψ(d(x∗, y∗)))

< ψ(d(x∗, y∗))− ψ(d(x∗, y∗)) = 0,
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which is a contradiction. Hence d(x∗, y∗) = 0, and hence T has a unique fixed
point. �

Corollary 3.6. Let (X, d) be a complete metric space and let T : X → X be a
generalized rational (α, β, Z)-contraction mapping with respect to ζ such that

ζ(d(Tx, Ty),m(x, y)) ≥ 0

for all x, y ∈ X with α(x)β(y) ≥ 1. Suppose that α(x0) ≥ 1 and β(x0) ≥ 1,
where x0 ∈ X. Assume that either

(1) T is continuous or
(2) if {xn} is a sequence in X such that limn→∞ d(xn, x) = 0 and β(xn) ≥

1 for all n, then β(x) ≥ 1.

If T : X → X is cyclic (α, β)-admissible, then T has a fixed point in X.
Further if α(x)β(y) ≥ 1 for all fixed points x, y of T , then T has a unique
fixed point.

Note that the continuity of the mapping T in Theorem 3.2 can be dropped
if we replace condition (3) by a suitable one as in the following result.

Corollary 3.7. Let (X, d) be a complete metric space, T : X → X be a
mapping and α, β : X → [0,+∞) be two functions. Suppose that the following
conditions hold:

(1) T is a rational (α, β, Z)-contraction mapping.
(2) There exists an element x0 ∈ X such that α(x0) ≥ 1 and β(x0) ≥ 1.
(3) If {xn} is a sequence in X converges to x ∈ X with α(xn) ≥ 1 (or

β(xn) ≥ 1) for all n ∈ N, then β(x) ≥ 1 (or α(x) ≥ 1) for all n ∈ N.

Then T has a fixed point.

By taking the function β : X → [0,+∞) to be α in Theorem 3.2, we get
the following Corollary:

Corollary 3.8. Let (X, d) be a complete metric space, T : X → X be a
mapping and α : X → [0,+∞) be a function. Suppose that the following
conditions hold:

(1) There exists ζ ∈ Z such that if x, y ∈ X with α(x)α(y) ≥ 1, then
ζ(d(Tx, Ty),M(x, y)) ≥ 0, where

M(x, y) = max
{
d(x, y),

d(x, Tx)d(y, Ty)

1 + d(x, y)
,
d(x, Tx)d(y, Ty)

1 + d(Tx, Ty)

}
.

(2) If x ∈ X with α(x) ≥ 1, then α(Tx) ≥ 1.
(3) There exists x0 ∈ X such that α(x0) ≥ 1.
(4) If {xn} is a sequence in X converges to x ∈ X with α(xn) ≥ 1 for all

n ∈ N, then α(x) ≥ 1 for all n ∈ N.
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Then T has a fixed point.

Example 3.9. Let X = [−1, 1]. Define d : X ×X → R by d(x, y) = |x − y|.
Also, define the mapping T : X → X the two functions α, β : X → [0,∞) and
the function ζ : [0,+∞)× [0,∞)→ R as follows:

T (x) =

{
x
4 , if x ∈ [0, 1],
1/4, otherwise,

α(x) =

{
x+3
2 , if x ∈ [0, 1],

0, otherwise,

β(x) =

{
x+5
4 , if x ∈ [0, 1],

0, otherwise,

ζ(t, s) =
s

s+ 1
− t.

Then, we have the following:

(1) (X, d) is a complete metric space.
(2) ζ is a simulation function.
(3) There exists x0 ∈ X such that α(x0) ≥ 1 and β(x0) ≥ 1.
(4) T is continuous.
(5) T is cyclic (α, β)-admissible mapping.
(6) For x, y ∈ X with α(x)β(y) ≥ 1, we have

ζ(d(Tx, Ty),M(x, y)) ≥ 0,

where

M(x, y) = max
{
d(x, y),

d(x, Tx)d(y, Ty)

1 + d(x, y)
,
d(x, Tx)d(y, Ty)

1 + d(Tx, Ty)

}
.

Indeed, the proof of (1), (2), (3) and (4) are clear. To prove (5), let x ∈ X.
If α(x) ≥ 1 then x ∈ [0, 1]. So,

β(Tx) = β(x/4) =
(x/4) + 5

4
=
x+ 20

16
≥ 1.

If β(x) ≥ 1, then x ∈ [0, 1]. So,

α(Tx) = α(x/4) =
(x/4) + 3

2
=
x+ 12

8
≥ 1.
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So, T is cyclic (α, β)-admissible. To prove (6), let x, y ∈ X with α(x)β(x) ≥ 1.
Then x, y ∈ [0, 1], therefore, we have

ζ(d(Tx, Ty),M(x, y)) =
M(x, y)

1 +M(x, y)
− d(Tx, Ty)

≥ d(x, y)

1 + d(x, y)
− |T (x)− T (y)|

=
d(x, y)

1 + d(x, y)
− |x/4− y/4|

=
|x− y|

1 + |x− y|
− |x/4− y/4|

=
3|x− y| − |x− y|2

4[1 + |x− y|]
≥ 0.

So, T is a rational (α, β, Z)-contraction mapping. Hence this satisfies all the
conditions of Theorem 3.2. So T has fixed point. Here 0 is the fixed point of
T .

4. Conclusion

In this paper, we establish some unique fixed point results for rational
(α, β, Z)-contraction mapping and generalized rational (α, β, Z)-contraction
mapping in the setting of complete metric space via a cyclic (α, β)-admissible
mapping imbedded in simulation function. Our results extend and generalize
several results from the existing literature.

Acknowledgements: The authors are thankful to the learned referee for
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improve the paper significantly.
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