DOI QR코드

DOI QR Code

Smelting and Refining of Silicon

실리콘의 제련과 정제

  • Sohn, Ho-Sang (School of Materials Science and Engineering, Kyungpook National University)
  • 손호상 (경북대학교 신소재공학부)
  • Received : 2021.11.29
  • Accepted : 2022.01.03
  • Published : 2022.02.28

Abstract

Silicon is the most abundant metal element in the Earth's crust. Metallurgical-grade silicon (MG-Si) is an important metal that has wide industrial applications, such as a deoxidizer in the steelmaking industry, alloying elements in the aluminum industry, the preparation of organosilanes, and the production of electronic-grade silicon, which is used in the electronics industry as well as solar cells. MG-Si is produced industrially by the reduction smelting of silicon dioxide with carbon in the form of coal, coke, or wood chips in electric arc furnaces. MG-Si is purified by chemical treatments, such as the Siemens process. Most single-crystal silicon is produced using the Czochralski method. These smelting and refining methods will be helpful for the development of new recycling processes using secondary silicon resources.

실리콘은 지각에서 가장 풍부한 금속 원소이다. 금속급 실리콘(MG-Si)은 제강공정의 탈산제, 알루미늄 산업에서 합금 원소, 유기실레인 제조, 태양전지 등의 전자산업에 사용되는 전자급 실리콘 생산 등 산업적으로 널리 응용되는 중요한 금속이다. MG-Si는 전기 아크로에서 석탄, 코크스 또는 목재 칩의 형태인 탄소와 함께 이산화규소를 용융환원하여 만들어진다. MG-Si는 Siemens 공정과 같은 화학 처리를 통해 정제되며, 대부분의 단결정 실리콘은 쵸크랄스키 방식으로 만들고 있다. 이러한 제련 및 정제 방법은 2차 실리콘 자원으로부터 새로운 재활용 공정을 개발하는 데 기여할 수 있을 것이다.

Keywords

References

  1. Sohn, Hosang, 2020 : Recycling of Common Metals, p.17, KNU Press, Daegu Korea.
  2. Mary Elvira Weeks, 1932 : The discovery of the elements. XII. Other elements isolated with the aid of potassium and sodium: Beryllium, boron, silicon, and aluminum, J. Chem. Educ., 9(8), pp.1386-1412. https://doi.org/10.1021/ed009p1386
  3. Thomas Thomson, 1817 : A System of Chemistry in Four Volumes, 5th ed. vol. 1. pp.251-257, Baldwin, Cradock and Joy, London.
  4. Emily K. Schnebele, 2021 : Silicon, U.S. Geological Survey, Mineral Commodity Summaries, USGS.
  5. Sohn, Ho-Sang, 2019 : Recycling Technologies of Aluminum, J. of Korean Inst. of Resources Recycling, 28(2), pp.3-13. https://doi.org/10.7844/KIRR.2019.28.2.3
  6. Antoine Boubault, 2019 : Criticality assessment - Silicon metal, BRGM, https://www.mineralinfo.fr/page/fiches-criticite
  7. Schei A., J. Kr. Tuset & H. Tveit, 1998 : Production of High Silicon Alloys, Ch. 1 Introduction, p.2, Tapir Academic Press, Trondkeim, Norway.
  8. Lynch, D., 2009 : Winning the Global Race for Solar Silicon, JOM, 61(11), pp.41-48. https://doi.org/10.1007/s11837-009-0166-8
  9. Sakong, Seong-Dae, Son, Injoon and Sohn, Ho-Sang, 2021 : Removal of Fe from Metallurgical Grade Si by Directional Solidification, Resources Recycling, 30(4), pp.20-26. https://doi.org/10.7844/KIRR.2021.30.4.20
  10. Yasuda, K., Morita, K. and Okabe, T. H., 2010 : Production Processes of Solar Grade Silicon by Hydrogen Reduction and/or Thermal Decomposition, J. MMIJ, 126(4,5), pp. 115-123. https://doi.org/10.2473/journalofmmij.126.115
  11. Takeshita, M., Ito, H. and Hanaue, Y., 2007 : Polysilicon Production in Mitsubishi Materials Corporation, J. MMIJ, 23(12), pp.704-706. https://doi.org/10.2473/journalofmmij.123.704
  12. Fisher, G., Seactrist, M. R. and Standley, R. W., 2012 : Silicon Crystal Growth and Wafer Technologies, Proceedings of the IEEE 100, pp.1454-1474, May 13th, 2012. https://doi.org/10.1109/JPROC.2012.2189786
  13. Sakong, Seong-Dae and Sohn, Ho-Sang, 2011 : Removal of Iron and Phosphorus from Metallurgical Grade Silicon by Melting with Ca and Aqua Regia Leaching, J. of Korean Inst. of Resources Recycling, 10(5), pp.34-39.
  14. Teixeira, L. A. V., Tokuda, Y., Yoko, T., et al., 2009 : Behavior and State of Boron in CaO-SiO2 Slags during Refining of Solar Grade Silicon, ISIJ International, 49(6), pp.777-782. https://doi.org/10.2355/isijinternational.49.777
  15. Kato, Yoshiei, Hanazawa, Kazuhiro, Baba Hiroyuki, et al., 2000 : Purification of Metallurgical Grade Silicon to Solar Grade for Use in Solar Cell Wafers, Tetsu-to-Hagane, 86(11), pp.717-724. https://doi.org/10.2355/tetsutohagane1955.86.11_717
  16. Sakong, Seong-Dae, Sohn, Ho-Sang and Choi, Byung-Jin, 2011 : Removal of Boron from Metallurgical Grade Silicon by Slag Treatmen, J. of Korean Inst. of Resources Recycling, 20(3), pp.55-61. https://doi.org/10.7844/KIRR.2011.20.3.055
  17. Martorano, M. A., Ferreira Neto, J. B., Oliveira, T. S., et al., 2011 : Refining of metallurgical silicon by directional solidification, Materials Science and Engineering B, 176, pp.217-226. https://doi.org/10.1016/j.mseb.2010.11.010
  18. Hopkins, R. H. and Rohatgi, A., 1986 : Impurity Effects in Silicon for High Efficiency Solar Cells, J. Crystal Growth, 75, pp.67-79. https://doi.org/10.1016/0022-0248(86)90226-5
  19. Kirkwood, D. H., 1984 : Microsegregation, Materials Science and Engineering, 65, pp.101-109. https://doi.org/10.1016/0025-5416(84)90204-0
  20. Martorano, M.A., Neto Ferreira, J.B., Oliveira, T.S., et al., 2011 : Macrosegregation of Impurities in Directionally Solidified Silicon, Metall. & Mater. Trans. A, 42A, pp. 1870-1886.
  21. Shimura, F., 2017 : Single-Crystal Silicon: Growth and Properties, In: Kasap S., Capper P.(eds.), Springer Handbook of Electronic and Photonic Materials, Springer Handbooks, 2, p.297, Springer, Cham.
  22. Rudolph, P. and Kakimoto, K., 2009 : Crystal Growth from the Melt under External Force Fields, MRS BULLETIN, 34, pp.251-258. https://doi.org/10.1557/mrs2009.75
  23. Prakash, V., Agarwal, A. and Mussada, E. K., 2019: Processing Methods of Silicon to its Ingot: a Review, Silicon, 11, pp.1617-1634. https://doi.org/10.1007/s12633-018-9983-0