• Title/Summary/Keyword: 리사이클링

Search Result 79, Processing Time 0.027 seconds

Changes of Recycled Paper Properties and Waste Paper Deinkability by the Repeated Recycling of Photocopy Paper (복사용지의 리사이클링 반복처리에 따른 재생지의 특성 및 고지의 탈묵성 변화)

  • Shin, Jun-Seop
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.4 no.2
    • /
    • pp.24-32
    • /
    • 1998
  • This study examined the effects of recycling on chemical pulp fibers from multiple recycles. Firstly, water-pretreated alkaline photocopy paper was disintegrated by TAPPI standard disintegrator at room temperature. After dewatering, this pulp was dried in oven at $80^{\circ}C$ for 24hrs. A sequence of wetting, disintegrating and drying was one recycling cycle and this cyclic treatment was repeated from zero to five times. The recycled handsheet dropped to 90% of the original brightness after five cycles, and lost the most brightness in the first two cycles. However, it had a gain of 10% in opacity after five cycles. And, in this study, the method for determining residual ink(toner) content in recycled handsheets were estabilished by means of SEM-EDX and atomic absorptive photometer. The change of residual ink percentage on recycled paper showed the effect of recycling numbers on deinkability of waste paper. A slight decrease in deinkability was noted for the recycled handsheets, which may be due to the change of fiber surface free energy connected with fiber swelling.

  • PDF

Current Status of Titanium Recycling Technology (타이타늄의 리사이클링 기술 현황)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.26-34
    • /
    • 2021
  • Titanium is the fourth most abundant structural metal, after aluminum, iron, and magnesium. However, it is classified as a 'rare metals', because it is difficult to smelt. In particular, the primary titanium production process is highly energy-intensive. Recycling titanium scraps to produce ingots can reduce energy consumption and CO2 emissions by approximately 95 %. However, the amount of metal recycled from scrap remains limited of the difficulty in removing impurities such as iron and oxygen from the scrap. Generally, high-grade titanium and its alloy scraps are recycled by dilution with a virgin titanium sponge during the remelting process. Low-grade titanium scrap is recycled to ferrotitanium (cascade recycling). This paper provides an overview of titanium production and recycling processes.

Current Status of Zinc Smelting and Recycling (아연의 제련 및 리사이클링 현황)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.28 no.5
    • /
    • pp.30-41
    • /
    • 2019
  • Global production of zinc is about 13 million tons and zinc is the fourth-most widely used primary metal in the world following iron, aluminum and copper. When zinc is recycled to produce secondary zinc, it can save about 75 % of the total energy that is needed to produce the primary zinc from ore, and in therms of $CO_2$ emissions reduced by about 40 %. However, since zinc is mainly used for galvanizing of steel, the recycling rate of zinc is about 25 %, which is lower than other metals. The raw materials for recycling of zinc include dusts generated in the production of steel and brass, sludge in the production process of non-ferrous metals, dross in the melting of zinc ingots or hot dip galvanizing, waste batteries, and metallic scrap. Among them, steelmaking dust and waste batteries are most actively recycled up to now. Most of the recycling process uses pyrometallurgical methods. Recently, however, much attention has been given to a combined process of pyrometallurgical and hydrometallurgical processes.

Recycling of Copper Scrap (동스크랩의 리사이클링)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.28 no.3
    • /
    • pp.3-14
    • /
    • 2019
  • Copper is one of the first metals utilized by humankind about 11,500 years ago. But copper is not plentiful metallic element in the earth's crust. Copper has a high thermal and electric conductivity and is relatively corrosion resistant. In principle copper is virtually 100 % recyclable as an element without loss of quality. The recycling of copper scrap reduces the energy consumption and environmental burden, comparing to the primary metal production. Currently, approximately 30% of the global copper supply provides by recycling. Copper scrap is smelted in primary and secondary smelter. Type of furnace and process steps depend on the quality and grade of scrap. Depending on copper content of the secondary raw material, refining is required, which is usually done through electrorefining. This work provides an overview of the primary copper production and recycling process.

Implementation of Image Learning Model for Recycling (분리수거를 위한 리사이클링 봇 이미지데이터 학습모델 구현)

  • Noh, Yujeong;Shin, Boksuk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.527-529
    • /
    • 2021
  • This paper focuses on the implementation of machine learning model for Recycling bot, which is a platform service of recycling education. The recycling bot applied with a AI model using collected image set. The experiment confirms that classified by the model result are accurate.

  • PDF

Current Status of Lead Smelting and Recycling (납의 제련 및 리사이클링 현황)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.28 no.4
    • /
    • pp.3-14
    • /
    • 2019
  • Lead is one of the common non-ferrous metals used in modern industry. The usage of lead continues to increase and has risen from 5 million tonnes per year worldwide in the 1970s to 11 million tonnes in the 2010s. In principle lead is virtually 100 % recyclable as an element without loss of quality. The recycling of lead scrap reduces the energy consumption and environmental burden, comparing to the primary metal production. Therefore production of secondary lead from scrap has been steadily growing and at present it meets approximately 60 % of usage worldwide. Lead scrap (mainly lead-acid battery) is smelted in primary and secondary smelter. Most secondary lead smelting were performed in a shaft-type furnace (blast furnace), rotary furnace and reverberatory furnace. The lead bullion is either cast into ingots and re-melted in refining kettles or refining is performed on the hot lead bullion immediately after production. This work provides an overview of the primary lead production and recycling process.

A Development of Design Catalogue System for Recycling (리사이클링 고려 설계카탈로그 시스템의 구축)

  • Lee, Kun-Sang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.177-186
    • /
    • 2005
  • Today the tastes of consumers change rapidly and the kinds of the products become diverse. Therefore the product life cycle becomes shorter and shorter. Moreover the save of resources and the recycling for the environmental preservation are the essential theme. On this the necessary information for the product development increases enormously. For the right use of the information the design process should be supported by the proper design tool. For this the 'design catalogue system for recycling' is suggested here. This system consists of four parts, that is, 'the existing automobile system database', 'working principle database', 'assessment system of the ease of disassembly' and 'one's own product development database'. By the use of this system the product development period could be reduced about $30\%$ drastically.