Browse > Article
http://dx.doi.org/10.7844/kirr.2022.31.1.3

Smelting and Refining of Silicon  

Sohn, Ho-Sang (School of Materials Science and Engineering, Kyungpook National University)
Publication Information
Resources Recycling / v.31, no.1, 2022 , pp. 3-11 More about this Journal
Abstract
Silicon is the most abundant metal element in the Earth's crust. Metallurgical-grade silicon (MG-Si) is an important metal that has wide industrial applications, such as a deoxidizer in the steelmaking industry, alloying elements in the aluminum industry, the preparation of organosilanes, and the production of electronic-grade silicon, which is used in the electronics industry as well as solar cells. MG-Si is produced industrially by the reduction smelting of silicon dioxide with carbon in the form of coal, coke, or wood chips in electric arc furnaces. MG-Si is purified by chemical treatments, such as the Siemens process. Most single-crystal silicon is produced using the Czochralski method. These smelting and refining methods will be helpful for the development of new recycling processes using secondary silicon resources.
Keywords
silicon; reduction smelting; Siemens; Czochralski; solar cell; recycling;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Sohn, Hosang, 2020 : Recycling of Common Metals, p.17, KNU Press, Daegu Korea.
2 Mary Elvira Weeks, 1932 : The discovery of the elements. XII. Other elements isolated with the aid of potassium and sodium: Beryllium, boron, silicon, and aluminum, J. Chem. Educ., 9(8), pp.1386-1412.   DOI
3 Thomas Thomson, 1817 : A System of Chemistry in Four Volumes, 5th ed. vol. 1. pp.251-257, Baldwin, Cradock and Joy, London.
4 Emily K. Schnebele, 2021 : Silicon, U.S. Geological Survey, Mineral Commodity Summaries, USGS.
5 Sohn, Ho-Sang, 2019 : Recycling Technologies of Aluminum, J. of Korean Inst. of Resources Recycling, 28(2), pp.3-13.   DOI
6 Antoine Boubault, 2019 : Criticality assessment - Silicon metal, BRGM, https://www.mineralinfo.fr/page/fiches-criticite
7 Schei A., J. Kr. Tuset & H. Tveit, 1998 : Production of High Silicon Alloys, Ch. 1 Introduction, p.2, Tapir Academic Press, Trondkeim, Norway.
8 Lynch, D., 2009 : Winning the Global Race for Solar Silicon, JOM, 61(11), pp.41-48.   DOI
9 Yasuda, K., Morita, K. and Okabe, T. H., 2010 : Production Processes of Solar Grade Silicon by Hydrogen Reduction and/or Thermal Decomposition, J. MMIJ, 126(4,5), pp. 115-123.   DOI
10 Takeshita, M., Ito, H. and Hanaue, Y., 2007 : Polysilicon Production in Mitsubishi Materials Corporation, J. MMIJ, 23(12), pp.704-706.   DOI
11 Teixeira, L. A. V., Tokuda, Y., Yoko, T., et al., 2009 : Behavior and State of Boron in CaO-SiO2 Slags during Refining of Solar Grade Silicon, ISIJ International, 49(6), pp.777-782.   DOI
12 Fisher, G., Seactrist, M. R. and Standley, R. W., 2012 : Silicon Crystal Growth and Wafer Technologies, Proceedings of the IEEE 100, pp.1454-1474, May 13th, 2012.   DOI
13 Sakong, Seong-Dae and Sohn, Ho-Sang, 2011 : Removal of Iron and Phosphorus from Metallurgical Grade Silicon by Melting with Ca and Aqua Regia Leaching, J. of Korean Inst. of Resources Recycling, 10(5), pp.34-39.
14 Kato, Yoshiei, Hanazawa, Kazuhiro, Baba Hiroyuki, et al., 2000 : Purification of Metallurgical Grade Silicon to Solar Grade for Use in Solar Cell Wafers, Tetsu-to-Hagane, 86(11), pp.717-724.   DOI
15 Martorano, M. A., Ferreira Neto, J. B., Oliveira, T. S., et al., 2011 : Refining of metallurgical silicon by directional solidification, Materials Science and Engineering B, 176, pp.217-226.   DOI
16 Shimura, F., 2017 : Single-Crystal Silicon: Growth and Properties, In: Kasap S., Capper P.(eds.), Springer Handbook of Electronic and Photonic Materials, Springer Handbooks, 2, p.297, Springer, Cham.
17 Hopkins, R. H. and Rohatgi, A., 1986 : Impurity Effects in Silicon for High Efficiency Solar Cells, J. Crystal Growth, 75, pp.67-79.   DOI
18 Kirkwood, D. H., 1984 : Microsegregation, Materials Science and Engineering, 65, pp.101-109.   DOI
19 Martorano, M.A., Neto Ferreira, J.B., Oliveira, T.S., et al., 2011 : Macrosegregation of Impurities in Directionally Solidified Silicon, Metall. & Mater. Trans. A, 42A, pp. 1870-1886.
20 Sakong, Seong-Dae, Sohn, Ho-Sang and Choi, Byung-Jin, 2011 : Removal of Boron from Metallurgical Grade Silicon by Slag Treatmen, J. of Korean Inst. of Resources Recycling, 20(3), pp.55-61.   DOI
21 Rudolph, P. and Kakimoto, K., 2009 : Crystal Growth from the Melt under External Force Fields, MRS BULLETIN, 34, pp.251-258.   DOI
22 Prakash, V., Agarwal, A. and Mussada, E. K., 2019: Processing Methods of Silicon to its Ingot: a Review, Silicon, 11, pp.1617-1634.   DOI
23 Sakong, Seong-Dae, Son, Injoon and Sohn, Ho-Sang, 2021 : Removal of Fe from Metallurgical Grade Si by Directional Solidification, Resources Recycling, 30(4), pp.20-26.   DOI