DOI QR코드

DOI QR Code

저고도 운용 고정익 항공기의 고장 시 추락지점 및 속도 분포 연구

Research on The Crash Location and Speed Distribution of Low Altitude Fixed-Wing Aircraft

  • 투고 : 2021.10.20
  • 심사 : 2021.12.26
  • 발행 : 2022.01.01

초록

도심의 교통체증 문제를 해결하기 위해 eVTOL(Electric Vertical Take-Off and Landing) 항공기를 이용한 도심항공교통(UAM) 개념이 등장하여, 많은 국내외 기간들의 연구가 진행되고 있다. 하지만 도심 위를 필연적으로 비행하게 되는 eVTOL 기체가 차세대 교통수단으로 자리 잡기 위해서는 안전성의 확립이 필수적이다. 추락 시 위험도는 항공 안전과 관련된 대표적인 요소이며, 위험도 분석을 위해서는 돌발 상황으로 인한 기체의 추락 및 충돌 지점 예측이 필요하다. 고정익 모드로 운항하는 비행체의 경우 자세 혹은 방향을 결정하는 데 조종면이 큰 역할을 차지한다. 따라서 본 연구에서는 eVTOL 기체의 추락 시 위험도를 분석하기 위해 추진 시스템이 고장 난 기체의 조종면 각도에 따른 추락 지점의 분포를 추정하는 방법을 제시한다. 여기서, 성능과 형상이 공개된 eVTOL 기체를 대상으로 분석한 데이터를 사용하였다. 또한, 초기 조건에 따른 추락 지점의 분포와 확률을 계산하여 추락할 확률이 높은 구간을 도출하였으며, 추락 순간의 속도를 계산하였다.

In order to solve the problem of urban traffic congestion, Urban Air Mobility (UAM) concept using Electric Vertical Take-off and Landing (eVTOL) aircraft has been gaining popularity, and many domestic and international studies are underway. However, since these aircraft inevitably fly over densely populated areas, it is essential to ensure safety, which starts with accurately analyzing the crash risk. In this paper, the locations and impact speeds of crash are computed using six degree-of-freedom simulations of an eVTOL aircraft in a fixed-wing mode. System malfunction was modeled by a sudden loss of thrust with control surfaces being stuck during cruise. Because most of these eVTOL aircraft are still under development, a methodology of constructing a six degree-of-freedom dynamics model from generic specification is also developed. The results show that the crash locations are highly concentrated right under the aircraft within a square that has an edge length similar to the cruise altitude. Speed distribution is more complicated because almost identical crash locations can be achieved by two very different paths resulting in a large variation in the speeds.

키워드

과제정보

본 연구는 국토교통부의 '빅데이터 기반 항공안전관리 기술개발 및 플랫폼 구축(21BDAS-B158275-02)' 연구의 지원에 의하여 이루어진 연구로서, 관계부처에 감사드립니다.

참고문헌

  1. Korea Urban Air mobility(K-UAM) Roadmap, Ministry of Land, Infrastructure and Transport KOREA, 2020. pp. 4~7.
  2. Washington, A., Clothier, R. A. and Silva, J., "A review of unmanned aircraft system ground risk models," Progress in Aerospace Sciences, Vol. 1, No. 95, 2017, pp. 24~44. https://doi.org/10.1016/j.paerosci.2017.10.001
  3. Bertrand, S., Raballand, N. and Viguier, F., "Evaluating Ground Risk for Road Networks Induced by UAV operaitons," 2018 International Conference on Unmanned Aircraft Systems (ICUAS), June 2018, pp. 168~176.
  4. Zhang, X., Liu, Y., Zhang, Y., Guan, X., Delahaye, D. and Tang, L., "Safety Assessment and Risk Estimation for Unmanned Aerial Vehicles Operating in National Airspace System," Journal of Advanced Transportation, Vol. 2018, Article ID. 4731585, 2018, pp. 1~11.
  5. Primatesta, S., Rizzo, A. and La Cour-Harbo, A., " Ground Risk Map for Unmanned Aircraft in Urban Environments," Journal of Intelligent & Robotic Systems, Vol. 97, No 3, 2020, pp. 489~509. https://doi.org/10.1007/s10846-019-01015-z
  6. Kim, Y. S. and Bae, J. Y., "Small UAV Failure Rate Analysis Based on Human Damage on the Ground Considering Flight Over Popukated Area," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 49, No. 9, 2021, pp. 781~789. https://doi.org/10.5139/JKSAS.2021.49.9.781
  7. Wu, P. P. and Clothier, R. A., "The development of ground impact models for the analysis of the risks associated with Unmanned Aircraft Operations over Inhabited Areas," 11th International Probabilistic Safety Assessment and Management Conference and the Annual European Safety and Reliability Conference, 2012, pp. 5222~5235.
  8. Levasseur, B., Bertrand, S., Raballand, N., Viguier, F. and Goussu, G., "Accurate Ground Impact Footprints and Probabilistic Maps for Risk Analysis of UAV Missions," 2019 IEEE Aerospace Conference, March 2019, pp. 1~10.
  9. Bertrand, S., Raballand, N., Viguier, F. and Muller, M., "Gruond Risk Assessment for Long-Range Inspection Missions of Railways by UAVs," 2017 International Conference on Unmanned Aircraft Systems(ICUAS), June 2017, pp. 1134~1351.
  10. Drela, M. and Youngren, H., AVL 3.30 User Primer, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 2010, pp. 1~39.
  11. Raymer, D., Aircraft Design: A Conceptual Approach, 4th Ed., AIAA Education Series, 2006, pp. 327~332.