DOI QR코드

DOI QR Code

공대공 교전을 위한 유무인항공기 협업 전술 개발

Development of Air to Air Mission Tactics for Manned-Unmanned Aerial Vehicles Teaming

  • 투고 : 2021.09.28
  • 심사 : 2021.11.11
  • 발행 : 2022.01.01

초록

전장에서의 무인기 활용이 시작된 이후 무인기는 기만, 정찰, 공격 등 다양한 임무에 투입되어 인간을 대신하여 성공적인 임무를 수행하여 왔다. 과거, 기술의 제한으로 자율적 임무수행이나 유인기와의 협업을 통한 임무는 불가하였으나 데이터 통신, 인공지능 등의 기술 발전으로 인하여 자율임무 수행은 물론 유무인 협업을 통한 시너지 효과를 창출하는 수준까지 발전하였다. 본 연구에서는 공군의 항공우주작전 중 공대공 임무를 중심으로 유무인 협업이 가능한 임무를 식별하였으며, 많은 공대공 임무 중 가장 핵심이면서 기본 작전으로 판단된 전투기소탕에 관한 유무인 협업 전술 개발을 연구하였다. 전투기소탕 작전 중에서도 유무인 협업을 통한 비스텔스기 대응과 스텔스기 대응 전술로 구분하여 연구를 진행하였으며, 이후 간단한 공학시뮬레이션을 통하여 제시한 전술의 실효성(임무 성공과 유무인기 생존 가능성)을 증명하였다.

UAVs have been deployed various missions such as deception, reconnaissance and attack since they have been applied in battlefield and achieved missions successfully instead of man. In the past, it is impossible for UAVs to conduct autonomous missions or cooperative mission between manned aircraft due to the limitation of the technology. However, theses missions are possible owing to the advance in communication and AI Technology. In this research, we identified the possible cooperative missions between manned and unmanned team based on air-to-air mission. We studied cooperative manned and unmanned tactics about fighter sweep mission which is the core and basic operation among various air-to-air missions. We also developed cooperative tactics of manned and unmanned team by classifying nonstealth and stealth confrontational tactics. Hereafter, we verified the validity of the suggested tactics using computer simulations.

키워드

과제정보

본 연구는 국방과학연구소의 지원(UD200021JD)으로 수행된 '유무인 협업 공대공 교전을 위한 무인기 전술 및 자율기능 도출연구' 위탁과제 결과의 일부로서, 지원에 감사드립니다.

참고문헌

  1. www.darpa.mil/work-with-us/darpa-tiles-together-a-vision-of-mosiac-warfare
  2. Clark, B., Patt, D. and Schramm, H., "Mosaic Warfare Exploiting Artificial Intelligence And Autonomous Systems to Implement Decision-Centric Operations," CSBA, February 2020.
  3. www.thedrive.com/the-war-zone/14161/darpas-flying-missile-rail-seems-to-be-more-about-manufacturing-than-combat
  4. www.dailymail.co.uk/sciencetech/article-7062175/F-35-F-15EX-fighter-drone-wingmen-coming-years-Skyborg-programme.html
  5. Kim, J. H., Seo, W. S., Choi K. Y. and Ryoo, C. K., "Analysis of SEAD Mission Procedures for Manned-Unmanned Aerial Vehicles Teaming," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 47, No. 9, 2019, pp. 678~685. https://doi.org/10.5139/JKSAS.2019.47.9.678
  6. U.S. Joint Staff, "2018 National Defense Strategy of The Unite States of America," 2018.
  7. National Defense Strategy Commission, "Providing for the Common Defense: The Assessment and Recommendations of the National Defense Strategy Commission," 2018.
  8. www.defenceconnect.com.au/strike-air-combat/6553-us-air-force-announces-contenders-for-local-loyal-wingman-competition, July 2020.
  9. Gunzinger, M., Rehberg, C. and Autenried, L., "Five Priority for Air Force's Future Combat Air Force," CSBA, July 2020.
  10. www.defensenews.com/air/2021/03/02/australia-makes-another-order-for-boeing-made-loyal-wingman-drones-after-a-successful-first-flight/
  11. https://defense-update.com/20190928_okhotnik_mumt.html
  12. R.O.K AirForce, "Counterair Opeartion 3-1," 2017.
  13. https://ko.wikipedia.org/wiki/AIM-120
  14. O'donoughue, N., Mcbirney, S. and Persons, B., "Distributed Kill Chains: Drawing Insights for Mosaic Warfare from the Immune System and from the Navy," RAND, California, 2021.
  15. Tyrell, T., Funk, C. and Marton, N., "AIM-120C-5 Performance Assessment for Digital Combat Simulation Enhancement, Revision 2," 2014.
  16. Gaitanakis, G., Limnaios, G. and Zikidis, K., "AESA radar and IRST against low observable threats," Aircraft Engineering and Aerospace Technology, Vol. 92, No. 9, March 2020, pp. 1421~1428. https://doi.org/10.1108/aeat-01-2020-0011
  17. Gaitanakis, G., Vlastaras, A., Vassos, N. and Limnaios, G., "InfraRed Search & Track Systems as an Anti-Stealth Approach," Journal of Computations & Modelling, Vol. 9, No. 1, 2019, pp. 33~53
  18. http://defense-update.com/features/2010/november/02112010_das_missile_track.html
  19. Moir, I., and Seabridge, A., "Military Avionics Systems," Wiley press, NewYork, 2006.
  20. Park, S. H., Deyst, J. and How, J. P., "A new nonlinear guidance logic for trajectory tracking," AIAA Guidance, Navigation, and Control Conference (GNC), August 2004.
  21. Park, S., Deyst, J. and How, J. P., "Performance and Lyapunov Stability of a Nonlinear Path-Following Guidance Method," AIAA Journal on Guidance, Control, and Dynamics, Vol. 30, No. 6, November 2007, pp. 1718~1728. https://doi.org/10.2514/1.28957