DOI QR코드

DOI QR Code

Efficient Removal of Sulfamethoxazole in Aqueous Solutions Using Ferrate (VI): A Greener Treatment

  • Lalthazuala, Levia (Department of Chemistry School of Physical Sciences, Mizoram University) ;
  • Tiwari, Diwakar (Department of Chemistry School of Physical Sciences, Mizoram University) ;
  • Lee, Seung-Mok (Department of Environmental Engineering, Catholic Kwandong University) ;
  • Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University)
  • Received : 2021.04.12
  • Accepted : 2021.04.26
  • Published : 2021.06.10

Abstract

The aim of this research is to assess the use of high purity potassium ferrate (VI) for the efficient removal of sulfamethoxazole (SMX), one of the potential micro-pollutant found in aqueous waste. In addition, various parametric studies have enabled us to deduce the mechanism in the degradation process. The pH and concentration of sulfamethoxazole enable the degradation of pollutants. Moreover, the time-dependent degradation nature of sulfamethoxazole showed that the degradation of ferrate (VI) in presence of sulfamethoxazole followed the pseudo-second order kinetics and the value of rate constant increased with an increase in the SMX concentration. The stoichiometry of SMX and ferrate (VI) was found to be 2 : 1 and the overall rate constant was estimated to be 4559 L2/mmol2/min. On the other hand, the increase in pH from 8.0 to 5.0 had catalyzed the degradation of SMX. Similarly, a significant percentage in mineralization of SMX increased with a decrease in pH and concentration. The presence of co-existing ions and SMS spiked real water samples was extensively analyzed in the removal of SMX using ferrate (VI) to simulate studies on real matrix implication of ferrate (VI) technology.

Keywords

Acknowledgement

One of the author DT acknowledges the CSIR, New Delhi providing the financial assistance in the form of Extra Mural Research Grant vide No. 24(354)/18-EMR-II.

References

  1. A. Gobel, C. S. Mc Ardell, A. Joss, H. Siegrist, and W. Giger, Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies, Sci. Total Environ., 372, 361-371 (2007). https://doi.org/10.1016/j.scitotenv.2006.07.039
  2. T. Heberer, Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: A review of recent research data, Toxicol. Lett., 131, 5-17 (2002). https://doi.org/10.1016/S0378-4274(02)00041-3
  3. A. Nikolaou, S. Meric, and D. Fatta, Occurrence patterns of pharmaceuticals in water and wastewater environments, Anal. Bioanal. Chem., 387, 1225-1234 (2007). https://doi.org/10.1007/s00216-006-1035-8
  4. A. Sanableh, M. Semreen, L. Semerjian, M. Abdallah, M. Mousa, and N. Darwish, Contaminants of emerging concern in Sharjah wastewater treatment plant, Sharjah, UAE, J. Environ. Sci., 14, 225-234 (2018).
  5. J. M. Brausch, K. A. Connors, B. W. Brooks, and G. M. Rand, Human pharmaceuticals in the aquatic environment: A review of recent toxicoilogical studies and considerations for toxicity testing, Rev. Environ. Contam. Toxicol., 218, 1-99 (2012).
  6. H. Gong and W. Chu, Determination and toxicity evaluation of the generated products in sulfamethoxazole degradation by UV/CoFe2O4/TiO2, J. Hazard. Mater., 314, 197-203 (2016). https://doi.org/10.1016/j.jhazmat.2016.04.052
  7. W. Baran, E. Aamek, J. Ziemianska, and A. Sobczak, Effects of the presence of sulfonamides in the environment and their influence on human health, J. Hazard. Mater., 196, 1-15 (2011). https://doi.org/10.1016/j.jhazmat.2011.08.082
  8. A. Shimizu, H. Takada, T. Koike, A. Takeshita, M. Saha, and N. Nakada, Ubiquitous occurrence of sulfonamides in tropical Asian waters, Sci. Total. Environ., 452-453, 108-115 (2013). https://doi.org/10.1016/j.scitotenv.2013.02.027
  9. A. G. Trovo, R. F. P. Nogueira, A. Aguera, R. Amadeo, F. Alba, C. Sirtori, and S. Malato, Degradation of sulfamethoxazole in water by solar photo-fenton. Chemical and toxicological evaluation, Water Res., 43, 3922-3931 (2009). https://doi.org/10.1016/j.watres.2009.04.006
  10. F. Santos, C. M. Ribeiro de Almeida, I. Ribeiro, A. C. Ferreira, and A. P. Mucha, Removal of veterinary antibiotics in constructed wetland microcosms-Response of bacterial communities, Ecotoxicol. Environ. Saf., 169, 894-901 (2019). https://doi.org/10.1016/j.ecoenv.2018.11.078
  11. S. Tajik, H. Beitollahi, M. S. Asl, H. W. Jang, and M. Shokouhimehr, BN-Fe3O4-Pd nanocomposite modified carbon paste electrode: Efficient voltammetric sensor for sulfamethaxazole, Ceram. Int., 47, 13903-13911 (2021). https://doi.org/10.1016/j.ceramint.2021.01.257
  12. A. M. Comerton, R. C. Andrews, D. M. Bagley, and C. Y. Hao, The rejection of endocrine disrupting and pharmaceutically active compounds by NF and RO membranes as a function of compound and water matrix properties, J. Membr. Sci., 313, 323-335 (2008). https://doi.org/10.1016/j.memsci.2008.01.021
  13. Y. L. Lin, C. C. Tsai, and N. Y. Zheng, Improving the organic and biological fouling resistance of pharmaceutical and personal care products through nanofiltration by using in situ radical graft polymerization, Sci. Total Environ., 635, 543-550 (2018). https://doi.org/10.1016/j.scitotenv.2018.04.131
  14. Y. Shi, G. Liu, L. Wang, and H. Zhang, Activated carbons derived from hydrothermal impregnation of sucrose with phosphoric acid: Remarkable adsorbents for sulfamethoxazole removal, RSC Adv., 9, 17841-17851 (2019). https://doi.org/10.1039/C9RA02610J
  15. F. Reguval and A. K. Sarmah, Adsorption of sulfamethoxazole by magnetic biochar: Effects of pH, natural organic matter and 17 α-ethinylestradiol, Sci. Total Environ., 628-629, 722-730 (2018). https://doi.org/10.1016/j.scitotenv.2018.01.323
  16. K. K. Shimabuku, J. P. Kearns, J. E. Martinez, R. B. Mahoney, L. Monero-Vasqez, and R. S. Smmes, Biochar sorbents for sulfamethoxazole removal from surface water, stormwater and wastewater effluent, Water Res., 96, 236-245 (2016). https://doi.org/10.1016/j.watres.2016.03.049
  17. T. Luo, J. Wan, Y. Ma, Y. Wang, and Y. Wan, Sulfamethoxazole degradation by an Fe (ii)-activated persulfate process: Insight into the reactive sites, product identification nad degradation pathways, Environ. Sci. Impacts, 21, 1560-1569 (2019). https://doi.org/10.1039/C9EM00254E
  18. M. Dlugosz, P. Zmudzki, A. Kwiecien, K. Szczubialka, J. Krzek, and J. Nowakowska, Photocatalytic degradation of sulfamethoxazole using TiO2- expanded perlite photocatalyst, J. Hazard. Mater., 298, 146-153 (2015). https://doi.org/10.1016/j.jhazmat.2015.05.016
  19. O. Porcar-Santos, A. Cruz-Alclade, N. Lopez-Vinent, D. Zanganas, and S. Sans, Photocatalytic degradation of sulfamethoxazole using TiO2 in simulated seawater: Evidence for direct formation of reactive halogen species and halogenated by-products, Sci. Total Environ., 736, 139605 (2020). https://doi.org/10.1016/j.scitotenv.2020.139605
  20. O. Gonzalez, S. Sans, and S. Esplugas, Sulfamethoxazole abatement by photo-fenton: Toxicity, inhibition and biodegradability assessment of intermediates, J. Hazard. Mater., 146, 459-164 (2007). https://doi.org/10.1016/j.jhazmat.2007.04.055
  21. T. Garoma, S. K. Umamaheshwar, and A. Mumper, Removal of sulfadiazine, sulfamethizole, sulfamethoxazole and sulfathiazole from aqueous solution by ozonation, Chemosphere, 79, 814-820 (2010). https://doi.org/10.1016/j.chemosphere.2010.02.060
  22. S. W. Krasner, P. Westerhoff, B. Chen, B. E. Rittmann, and G. Amy, Occurrence of disinfection byproducts in United States wastewater treatment plant effluents, Environ. Sci. Technol., 43, 8320-8325 (2009). https://doi.org/10.1021/es901611m
  23. A. Acosta-Rangel, M. Sanchez-Polo, M. Rozalen, J. Rivera-Utrilla, A. M. S Polo, M. S. Berber-Mendoza, and M. V. Lopez-Ram, Oxidation of sulfonamides by ferrate(VI): Reaction kinetics, transformation byproducts and toxicity assessment, J. Environ. Manage., 255, 109927 (2020). https://doi.org/10.1016/j.jenvman.2019.109927
  24. J. Q. Jiang, Research progress in the use of ferrate(VI) for the environmental remediation, J. Hazard. Mater., 146, 617-623 (2007). https://doi.org/10.1016/j.jhazmat.2007.04.075
  25. V. K. Sharma, Ferrate(VI) and ferrate(V) oxidation of organic compounds: Kinetics and mechanism. Coordin. Chem. Rev., 257, 495-510 (2013). https://doi.org/10.1016/j.ccr.2012.04.014
  26. D. Ghernaout and M. W. Naceur, Ferrate(VI): In situ generation and water treatment-A review, Desalin. Water Treat., 30, 319-332 (2011). https://doi.org/10.5004/dwt.2011.2217
  27. V. K. Sharma, Oxidative transformation of environmental pharmaceuticals by Cl2, ClO2, O3 and Fe (VI): Kinetic assessment, Chemosphere, 73, 1379-1386 (2008). https://doi.org/10.1016/j.chemosphere.2008.08.033
  28. Y. Lee, M. Cho, J. Y. Kim, and J. Yoon, Chemistry of ferrate (Fe(VI)) in aqueous solution and its applications as a green chemical, J. Ind. Eng. Chem., 10, 161-171 (2004). https://doi.org/10.1021/ie50098a038
  29. S. M. Lee and D. Tiwari, Application of ferrate(VI) in the treatment of industrial wastes containing metal-complexed cyanides, J. Environ. Sci., 22, 1347-1352 (2009).
  30. J. Q. Jiang, S. Wang, and A. Panagoulopoulos, The exploration of potassium ferrate (VI) as a disinfectant/coagulant in water and wastewater treatment, Chemosphere, 63, 212-219 (2006). https://doi.org/10.1016/j.chemosphere.2005.08.020
  31. D. Tiwari, H.-U. Kim, B.-J. Choi, S.-M. Lee, O.-H. Kwon, K.-M. Choi, and J.-K. Yang, Ferrate(VI): A green chemical for the oxidation of cyanide aqueous/waste solutions, J. Environ. Sci. Health A, 42, 803-881 (2007). https://doi.org/10.1080/10934520701304674
  32. J. K. Yang, D. Tiwari, M. R. Yu, L. Pachuau, and S. M. Lee, Application of ferrate(VI) in the application of industrial wastes containing Zn(II)-NTA complexes in aqueous solutions: A green chemical treatment, Environ. Technol., 31, 791-798 (2010). https://doi.org/10.1080/09593331003664854
  33. C. Li, X. Z. Li, N. Graham, and N. Y. Gao, The aqueous degradation of bisphenol A and steroid estrogens by ferrate, Water Res., 42, 109-120 (2008). https://doi.org/10.1016/j.watres.2007.07.023
  34. D. Tiwari, Ferrate(VI) a greener solution: Synthesis, characterization, and multifunctional use in treating metal-complexed species in aqueous solution. In: Ferrites and Ferrates: Chemistry and Applications in Sustainable Energy and Environmental Remediation (Ed. V. K. Sharma, R. Doong, H. Kim, R. S. Varma, D. D. Dionysiou; American Symposium series, American Chemical Society, Washington DC), 161 (2016).
  35. D. Tiwari, L. Sailo, and L. Pachauau, Remediation of aquatic environment contaminated with the iminodiacetic acid metal complexes using ferrate (VI), Sep. Purif. Technol., 132, 77-83 (2014). https://doi.org/10.1016/j.seppur.2014.05.010
  36. D. Tiwari, J. K. Yang, Y. Y. Chang, and S. M. Lee, Application of ferrate on the decomplexation of Cu(II)-EDTA, Environ. Eng. Res., 13, 131-135 (2008). https://doi.org/10.4491/eer.2008.13.3.131
  37. L. Sailo, D. Tiwari, and S. M. Lee, Degradation of some micropollutants from aqueous solutions using ferrate (VI): Physio-chemical studies, Sep. Sci. Technol., 52, 2756-2766 (2017).
  38. V. K. Sharma, L. Chen, and R. Zboril, Review on high valent FeVI (ferrate): A sustainable green oxidant in organic chemistry and transformation of pharmaceuticals, ACS Sustain Chem. Eng., 4, 18-34 (2016). https://doi.org/10.1021/acssuschemeng.5b01202
  39. D. Tiwari, J. K. Yang, Y. Y. Chang, and S. M. Lee, Application of ferrate (VI) on the decomplexation of Cu(II)-EDTA, Environ. Eng. Res., 13, 131-135 (2008). https://doi.org/10.4491/eer.2008.13.3.131
  40. T. Ohta, T. Kamachi, Y. Shiota, and K. Yoshizawa, A theoretical study of alcohol oxidation by ferrate, J. Org. Chem., 66(12), 4122-4131 (2001). https://doi.org/10.1021/jo001193b
  41. V. K. Sharma, S. K. Mishra, and N. Nesnas, Oxidation of sulfonamide antimicrobials by ferrate (VI) [FeO42-], Environ. Sci. Technol., 40, 7222-7227 (2006). https://doi.org/10.1021/es060351z
  42. Y. Shiota, N. Kihara, T. Kamachi, and K. Yoshizawa, A theoretical study on reactivity and regioselectivity in the hydroxylation of admantane by ferrate (VI), J. Org. Chem., 68, 3958-3965 (2003). https://doi.org/10.1021/jo0207168
  43. J. D. Rush, Z. Zhao, and B. H. J. Bielski, Reaction of ferrate (VI)/ ferrate (V) with hydrogen peroxide and superoxide anion- a stopped-flow and premix pulse radiolysis study, Free Rad. Res., 24, 186-198 (1996).
  44. V. K. Sharma, S. K. Mishra, and A. K. Ray, Kinetics assessment of the potassium ferrate (VI) oxidation of anti-bacterial drug sulfamethoxazole, Chemosphere, 62, 128-134 (2006). https://doi.org/10.1016/j.chemosphere.2005.03.095