DOI QR코드

DOI QR Code

Efficient Adsorption of Methylene Blue from Aqueous Solution by Sulfuric Acid Activated Watermelone Rind (Citrullus lanatus)

  • Lee, Seo-Yun (Department of Seed Biotechnology, Graduate School of International Agricultural Technology, Seoul National University) ;
  • Choi, Hee-Jeong (Department of Biosystems and Convergence Engineering, Catholic Kwandong University)
  • Received : 2021.04.08
  • Accepted : 2021.05.21
  • Published : 2021.06.10

Abstract

The lignocellulose-based dried watermelon rind (WR) was modified with sulfuric acid, namely SWR for enhancement of methylene blue (MB) adsorption from the aqueous solution. According to FT-IR analysis, after the modification of WR with sulfuric acid, the functional groups of R-SO3H, COOH and -OH groups was formated or enhanced on the surface of the WR. Moreover, the point of zero charge (pHpzc) was changed from 6.3 to 4.1 after modification, which widened the range for adsorbing of cationic dye MB. The adsorption process of MB onto the SWR was suitable for pseudo-2nd-order and Langmuir model and the maximum adsorption capacity of Langmuir was found to be 334.45 mg/g at pH 7. In adition, the adsorption process occurs through the electrostatic interaction, hydrogen bridge formation, electron donor-acceptor relationship, and 𝜋-𝜋 electron dispersing force between functional groups on the carbon surface with MB molecules. Depending on functional groups available on the SWR surface, the MB adsorption mechanism can occur in combination with various interactions.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R111A3059243).

References

  1. E. Santoso, R. Ediati, Y. Kusumawati, H. Bahruji, D. O. Sulistiono, and D. Prasetyoko, Review on recent advances of carbon based adsorbent for methylene blue removal from waste water, Mater. Today Chem., 16, 100233 (2020). https://doi.org/10.1016/j.mtchem.2019.100233
  2. H. J. Choi and S. W. Yu, Biosorption of methylene blue from aqueous solution by agricultural bioadsorbent corncob, Environ. Eng. Res., 24(1), 99-106 (2019). https://doi.org/10.4491/eer.2018.107
  3. Aruna, N. Bagotia, A. K. Sharma, and S. Kumar, A review on modified sugarcane bagasse biosorbent for removal of dyes, Chemosphere, 268, 129309 (2021). https://doi.org/10.1016/j.chemosphere.2020.129309
  4. H. J. Choi, S. W. Yu, and K. H. Kim, Efficient use of Mg-modified zeolite in the treatment of aqueous solution contaminated with heavy metal toxic ions, J. Taiwan Inst. Chem. Eng., 63, 482-489 (2016). https://doi.org/10.1016/j.jtice.2016.03.005
  5. H. J. Choi, Assessment of the adsorption kinetics, equilibrium and thermodynamic for Pb(II) removal using a hybrid adsorbent, eggshell and sericite, in aqueous solution, Water Sci. Technol., 79(10), 1922-1933 (2019). https://doi.org/10.2166/wst.2019.191
  6. N. Supanchaiyamat, K. Jetsrisuparb, J. T. N. Knijneburg, D. C. W. Tsang, and A. J. Hunt, Lignin materials for adsorption: Current trend, perspectives and opportunities, Bioresour. Technol., 272, 570-581 (2019). https://doi.org/10.1016/j.biortech.2018.09.139
  7. M. S. Hasanin and A. H. Hashem, Eco-friendly, economic fungal universal medium from watermelon peel waste, J. Microbiol. Methods, 168, 105802 (2020). https://doi.org/10.1016/j.mimet.2019.105802
  8. A. H. Jawad, R. Razuan, J. N. Appaturi, and L. D. Wilson, Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus) rind prepared via one-step liquid phase H2SO4 activation, Surf. Interfaces, 16, 76-84 (2019). https://doi.org/10.1016/j.surfin.2019.04.012
  9. Y. Dai, Q. Sun, W. Wang, L. Lu, M. Liu, J. Li, S. Yang, Y. Sun, K. Zhang, J. Xu, W. Zheng, Z. Hu, Y. Yang, Y. Gao, Y. Chen, X. Zhang, F. Gao, and Y. Zhang, Utilization of agricultural waste as adsorbent for the removal of contminants: A review, Chemosphere, 211, 235-253 (2018). https://doi.org/10.1016/j.chemosphere.2018.06.179
  10. J. Li, H. Li, Z. Yuan, J. Fang, L. Chang, H. Zhang, and C. Li, Role of sulfonation in lignin-based material for adsorption removal of cationic dyes, Int. J. Biol. Macromol., 135, 1171-1181 (2019). https://doi.org/10.1016/j.ijbiomac.2019.06.024
  11. A. H. Jawad, R. A. Rashid, M. A. M. Ishak, and L. D. Wilson, Adsorption of methylene blue onto activated carbon developed from biomass waste by H2SO4 activation: kinetic, equilibrium and thermodynamic studies, Desalin. Water Treat., 57, 25194-25206 (2016). https://doi.org/10.1080/19443994.2016.1144534
  12. G. A. O. Weijue, J. P. W. Inwood, and P. Fatehi, Sulfonation of hydroxy methylated lignin and its application, J. Bioresour. Bioprod., 4(2), 80-88 (2019). https://doi.org/10.21967/jbb.v4i2.228
  13. S. Y. Lee and H. J. Choi, Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution, J. Environ. Manag., 209, 382-392 (2018). https://doi.org/10.1016/j.jenvman.2017.12.080
  14. S. W. Yu and H. J. Choi, Application of hybrid bead, persimmon leaf and chitosan for the treatment of aqueous solution contaminated with toxic heavy metal ions, Water Sci. Technol., 78(4), 837-847 (2018). https://doi.org/10.2166/wst.2018.354
  15. S. Manna, D. Roy, P. Saha, D. Gopakumar, and S. Thomas, Rapid methylene blue adsorption using modified lignocellulosic materials, Process Saf. Environ. Process, 107, 346-356 (2017). https://doi.org/10.1016/j.psep.2017.03.008
  16. S. Sabar, H. Abdul Aziz, N. H. Yusof, S. Subramaniam, K. Y. Food, L. D. Wilsone, and H. K. Lee, Preparation of sulfonated chitosan for enhanced adsorption of methylene blue from aqueous solution, React. Funct. Polym., 151, 104584 (2020). https://doi.org/10.1016/j.reactfunctpolym.2020.104584
  17. M. Furtmair, J. Timm, and R. Marschall, Sulfonation of porous materials and their proton conductivity, Microporous Mesoporous Mater., 312, 110745 (2021). https://doi.org/10.1016/j.micromeso.2020.110745
  18. K. F. L. Hagesteijn, S. Jiang, and B. P. Ladewig, A review of the synthesis and characterization of anion exchange membranes, J. Mater. Sci., 53, 11131-11150 (2018). https://doi.org/10.1007/s10853-018-2409-y
  19. H. J. Choi, Removal of Pb(II) from aqueous solution using hybrid adsorbent of sericite and spent coffee grounds, Appl. Chem. Eng., 29(5), 571-580 (2018). https://doi.org/10.14478/ace.2018.1056
  20. Q. Feng, H. Cheng, F. Chen, X. Zhou, P. Wang, and Y. Xie, Investigation of cationic dye adsorption from water onto acetic acid lignin, J. Wood Chem. Technol., 36, 173-181 (2015). https://doi.org/10.1080/02773813.2015.1104546
  21. A. H. Jawad, N. F. H. Mamat, M. F. Abdullah, and K. Ismail, Adsorption of methylene blue onto acid-treated mango peels: kinetic, equilibrium and thermodynamic, Desalin. Water Treat., 59, 210-219 (2017). https://doi.org/10.5004/dwt.2017.0097
  22. H. E. Osman, R. K. Badwy, and H. K. Ahmad, Usage of some agricultural by-products in the removal of some heavy metals from industrial wastewater, J. Phytol. Res., 2, 51-62 (2010).
  23. O. Uner, U. Gecgel, and Y. Bayrak, Adsorption of methylene blue by an efficient activated carbon prepared from Citrullus lanatus rind: Kinetic, isotherm, thermodynamic, and mechanism analysis, Water Air Soil Pollut., 227(7), 247 (2016). https://doi.org/10.1007/s11270-016-2949-1
  24. R. Roy, M. D. Sajjadur Rahman, and D. E. Raynie, Recent advances of greener pretreatment technologies of lignocellulose, Curr. Res. Green Sustain. Chem., 3, 100035 (2020). https://doi.org/10.1016/j.crgsc.2020.100035
  25. A. H. Jawad, S. Mohammed, M. S. Mastuli, and M. F. B. Abdullah, Carbonization of corn (Zea mays) cob agricultural residue by one-step activation with sulfuric acid for methylene blue adsorption, Desalin. Water Treat., 118, 342-351 (2018). https://doi.org/10.5004/dwt.2018.22680
  26. R. A. Rashid, A. H. Jawad, M. A. M. Ishak, and N. N. Kasim, KOH-activated carbon developed from biomass waste: Adsorption equilibrium, kinetic and thermodynamic studies for Methylene blue uptake, Desalin. Water Treat., 57(56), 1-11 (2016). https://doi.org/10.1080/19443994.2016.1119929
  27. Y. Li, H. Xiao, Y. Pan, and L. Wang, Novel composite adsorbent consisting of dissolved cellulose fiber/microfibrillated cellulose for dyr removal from aqueous solution, ACS Sustain. Chem. Eng., 6, 6994-7002 (2018). https://doi.org/10.1021/acssuschemeng.8b00829
  28. L. Zhang, H. Lu, J. Yu, E. McSporran, A. Khan, Y. Fan, Y. Yang, Z. Wang, and Y. Ni, Preparation of high-strength sustainable lignocellulose gels and their applications for antiultraviolet weathering and dye removal, ACS Sustain. Chem. Eng., 7(3), 2998-3009 (2019). https://doi.org/10.1021/acssuschemeng.8b04413
  29. S. Zhu, J. Xu, Y. Kuang, Z. Cheng, Q. Wu, J. Xie, B. Wang, W. Gao, J. Zeng, J. Li, and K. Chen, Lignin-derived sulfonated porous carbon from cornstalk for efficient and selective removal of cationic dyes, Ind. Crops Prod., 159, 113071 (2021). https://doi.org/10.1016/j.indcrop.2020.113071
  30. H. J. Choi, Applicability of composite beads, spent coffee grounds/chitosan, for the adsorptive removal of Pb(II) from aqueous solutions, Appl. Chem. Eng., 30(5), 536-545 (2019). https://doi.org/10.14478/ace.2019.1039
  31. S. N. Surip, A. S. Abdulhameed, Z. N. Garba, S. S. A. Syed-Hassan, K. Ismail, and A. H. Jawa, H2SO4-treated Malaysian low rank coal for methylene blue dye decolourization and cod reduction: Optimization of adsorption and mechanism study, Surf. Interfaces, 21, 100641 (2020). https://doi.org/10.1016/j.surfin.2020.100641
  32. C. Bhattacharjee, S. Dutta, and V. K. Saxena, A review on biosorptive removal of dyes and heavy metals from wastewater using watermelon rind as biosorbent, Environ. Adv., 2, 100007 (2020). https://doi.org/10.1016/j.envadv.2020.100007