DOI QR코드

DOI QR Code

Study on the Improvement of Electrochemical Performance by Controlling the Surface Characteristics of the Oxygen Electrode Porous Transport Layer for Proton Exchange Membrane Water Electrolysis

양이온 교환막 수전해용 산화전극 확산층의 표면 특성 제어를 통한 전기화학적 성능 개선 연구

  • Lee, Han Eol (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Linh, Doan Tuan (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Lee, Woo-kum (Department of Energy & Electrical Engineering, Woosuk University) ;
  • Kim, Taekeun (Department of Chemical Engineering Education, Chungnam National University)
  • 이한얼 (충남대학교 에너지과학기술대학원) ;
  • ;
  • 이우금 (우석대학교 에너지전기공학과) ;
  • 김태근 (충남대학교 화학공학교육과)
  • Received : 2021.05.10
  • Accepted : 2021.05.26
  • Published : 2021.06.10

Abstract

Recently, due to concerns about the depletion of fossil fuels and the emission of greenhouse gases, the importance of hydrogen energy technology, which is a clean energy source that does not emit greenhouse gases, is being emphasized. Water electrolysis technology is a green hydrogen technology that obtains hydrogen by electrolyzing water and is attracting attention as one of the ultimate clean future energy resources. In this study, the surface properties of the porous transport layer (PTL), one of the cell components of the proton exchange membrane water electrolysis (PEMWE), were controlled using a sandpaper to reduce overvoltage and increase performance and stability. The surfaces of PTL were sanded using sandpapers of 400, 180, and 100 grit, and then all samples were finally treated with the sandpaper of 1000 grit. The prepared PTL was analyzed for the degree of hydrophilicity by measuring the water contact angle, and the surface shape was observed through SEM analysis. In order to analyze the electrochemical characteristics, I-V performance curves and impedance measurements were conducted.

최근 화석 연료 고갈과 지구 온난화를 가속화하는 온실 가스 배출에 대한 우려로 온실 가스를 배출하지 않는 청정 에너지원인 수소 에너지 기술의 중요성이 강조되고 있다. 그 중 물을 전기분해하여 수소를 얻는 수전해 기술은 그린 수소 기술로 궁극적인 청정 미래 에너지 자원으로 주목받고 있다. 본 연구에서는 양이온 교환막 수전해(proton exchange membrane water electrolysis, PEMWE)의 셀 구성요소 중 하나인 확산층(porous transport layer, PTL)을 sandpaper를 이용한 표면 처리를 통하여 표면 특성을 제어하였으며, 이러한 표면 특성 개선을 통하여 과전압을 줄이고 성능과 안정성을 높이기 위한 연구를 진행하였다. Sandpaper 400, 180, 100방을 준비하여 PTL 표면을 sanding하여 처리하였으며, 처리 후 1000방의 고른 sandpaper로 표면을 매끄럽게 처리하였다. 준비된 확산층은 물접촉각을 측정하여 친수성 정도를 분석하였으며, SEM 분석을 통하여 표면 형태를 관찰하였다. 전기화학적 특성 분석을 위하여 I-V 성능곡선, 임피던스 측정을 진행하여 성능 개선 여부를 확인하였다.

Keywords

Acknowledgement

본 연구는 충남대학교 자체 연구(CNU사업, 정보통신방송표준개발지원사업, 과제번호 2018-0988-01) 지원에 의하여 수행되었습니다.

References

  1. S. Rehman, L. M. Al-Hadhrami, and M. M. Alam, Pumped hydro energy storage system: A technological review, Renew. Sustain. Energy Rev., 44, 586-598 (2015). https://doi.org/10.1016/j.rser.2014.12.040
  2. E. Barbour, I. G. Wilson, J. Radcliffe, Y. Ding, and Y. Li, A review of pumped hydro energy storage development in significant international electricity markets, Renew. Sustain. Energy Rev., 61, 421-432 (2016). https://doi.org/10.1016/j.rser.2016.04.019
  3. L. Chen, T. Zheng, S. Mei, X. Xue, B. Liu, and Q. Lu, Review and prospect of compressed air energy storage system, J. Mod. Power Syst. Clean Energy, 4, 529-541 (2016). https://doi.org/10.1007/s40565-016-0240-5
  4. J. Wang, K. Lu, L. Ma, J. Wang, M. Dooner, S. Miao, J. Li, and D. Wang, Overview of compressed air energy storage and technology development, Energies, 10, 991 (2017). https://doi.org/10.3390/en10070991
  5. M. E. Amiryar, and K. R. Pullen, A review of flywheel energy storage system technologies and their applications, Appl. Sci., 7, 286 (2017). https://doi.org/10.3390/app7030286
  6. F. Faraji, A. Majazi, and K. Al-Haddad, A comprehensive review of flywheel energy storage system technology, Renew. Sustain. Energy Rev., 67, 477-490 (2017). https://doi.org/10.1016/j.rser.2016.09.060
  7. P. Mukherjee, and V. Rao, Design and development of high temperature superconducting magnetic energy storage for power applications-A review, Physica C: Supercond., 563, 67-73 (2019). https://doi.org/10.1016/j.physc.2019.05.001
  8. V. S. Vulusala G, and S. Madichetty, Application of superconducting magnetic energy storage in electrical power and energy systems: A review, Int. J. Energy Res., 42, 358-368 (2018). https://doi.org/10.1002/er.3773
  9. A. Afif, S. M. Rahman, A. T. Azad, J. Zaini, M. A. Islan, and A. K. Azad, Advanced materials and technologies for hybrid supercapacitors for energy storage - A review, J. Energy Storage, 25, 100852 (2019). https://doi.org/10.1016/j.est.2019.100852
  10. L. Kouchachvili, W. Yaici, and E. Entchev, Hybrid battery/supercapacitor energy storage system for the electric vehicles, J. Power Sources, 374, 237-248 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.040
  11. F. Schipper and D. Aurbach, A brief review: Past, present and future of lithium ion batteries, Russ. J. Electrochem., 52, 1095-1121 (2016). https://doi.org/10.1134/S1023193516120120
  12. M. M. Thackeray, C. Wolverton, and E. D. Isaacs, Electrical energy storage for transportation - Approaching the limits of, and going beyond, lithium-ion batteries, Energy Environ. Sci., 5, 7854-7863 (2012). https://doi.org/10.1039/c2ee21892e
  13. D. Kumar, S. K. Rajouria, S. B. Kuhar, and D. Kanchan, Progress and prospects of sodium-sulfur batteries: A review, Solid State Ionics, 312, 8-16 (2017). https://doi.org/10.1016/j.ssi.2017.10.004
  14. X. Xu, D. Zhou, X. Qin, K. Lin, F. Kang, B. Li, D. Shanmukaraj, T. Rojo, M. Armand, and G. Wang, A room-temperature sodium-sulfur battery with high capacity and stable cycling performance, Nat. commun., 9, 1-12 (2018). https://doi.org/10.1038/s41467-017-02088-w
  15. A. Bates, S. Mukerjee, S. C. Lee, D.-H. Lee, and S. Park, An analytical study of a lead-acid flow battery as an energy storage system, J. Power Sources, 249, 207-218 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.090
  16. H. Zhang, X. Li, and J. Zhang, Redox Flow Batteries: Fundamentals and Applications, 1st ed., 33487-2742, CRC Press, Florida, USA (2017).
  17. M. H. Chakrabarti, S. Hajimolana, F. S. Mjalli, M. Saleem, and I. Mustafa, Redox flow battery for energy storage, Arab. J. Sci. Eng., 38, 723-739 (2013). https://doi.org/10.1007/s13369-012-0356-5
  18. J. Ma, Q. Li, M. Kuhn, and N. Nakaten, Power-to-gas based subsurface energy storage: A review, Renew. Sustain. Energy Rev., 97, 478-496 (2018). https://doi.org/10.1016/j.rser.2018.08.056
  19. M. M. Rashid, M. K. Al Mesfer, H. Naseem, and M. Danish, Hydrogen production by water electrolysis: A review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis, Int. J. Eng. Adv. Technol., 4, 2249-8958 (2015).
  20. E. Zoulias, E. Varkaraki, N. Lymberopoulos, C. N. Christodoulou, and G. N. Karagiorgis, A review on water electrolysis, TCJST, 4, 41-71 (2004).
  21. M. Ni, M. K. Leung, and D. Y. Leung, Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC), Int. J. Hydrog. Energy, 33, 2337-2354 (2008). https://doi.org/10.1016/j.ijhydene.2008.02.048
  22. A. Pandiyan, A. Uthayakumar, R. Subrayan, S. W. Cha, and S. B. Krishna Moorthy, Review of solid oxide electrolysis cells: A clean energy strategy for hydrogen generation, Nanomater. Energ., 8, 2-22 (2019). https://doi.org/10.1680/jnaen.18.00009
  23. J. P. Stempien, Q. Sun, and S. H. Chan, Solid oxide electrolyzer cell modeling: A review, J. Power Technol., 93, 216- 246 (2013).
  24. M. Wang, Z. Wang, X. Gong, and Z. Guo, The intensification technologies to water electrolysis for hydrogen production - A review, Renew. Sustaina. Energy Rev., 29, 573-588 (2014) https://doi.org/10.1016/j.rser.2013.08.090
  25. J. Brauns and T. Turek, Alkaline water electrolysis powered by renewable energy: A review, Processes, 8, 248 (2020). https://doi.org/10.3390/pr8020248
  26. M. David, C. Ocampo-Martinez, and R. Sanchez-Pena, Advances in alkaline water electrolyzers: A review, J. Energy Storage, 23, 392-403 (2019). https://doi.org/10.1016/j.est.2019.03.001
  27. L. M. Gandia, R. Oroz, A. Ursua, P. Sanchis, and P. M. Dieguez, Renewable hydrogen production: performance of an alkaline water electrolyzer working under emulated wind conditions, Energy Fuels, 21, 1699-1706 (2007). https://doi.org/10.1021/ef060491u
  28. P. Haug, B. Kreitz, M. Koj, and T. Turek, Process modelling of an alkaline water electrolyzer, Int. J. Hydrog. Energy, 42, 15689-15707 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.031
  29. J. Hughes, J. Clipsham, H. Chavushoglu, S. Rowley-Neale, and C. Banks, Polymer electrolyte electrolysis: A review of the activity and stability of non-precious metal hydrogen evolution reaction and oxygen evolution reaction catalysts, Renewa. Sustain. Energy Rev., 139, 110709 (2021). https://doi.org/10.1016/j.rser.2021.110709
  30. P. Shirvanian, and F. van Berkel, Novel components in Proton Exchange Membrane (PEM) Water Electrolyzers (PEMWE): Status, challenges and future needs. A mini review, Electrochem. Commun., 114, 106704 (2020). https://doi.org/10.1016/j.elecom.2020.106704
  31. S. S. Kumar, and V. Himabindu, Hydrogen production by PEM water electrolysis - A review, Mater. Sci. Energy Technol., 2, 442- 454 (2019). https://doi.org/10.1016/j.mset.2019.03.002
  32. B.-S. Lee, S. H. Ahn, H.-Y. Park, I. Choi, S. J. Yoo, H.-J. Kim, D. Henkensmeier, J. Y. Kim, S. Park, and S. W. Nam, Development of electrodeposited IrO2 electrodes as anodes in polymer electrolyte membrane water electrolysis, Appl. Catal. B: Environ., 179, 285-291 (2015). https://doi.org/10.1016/j.apcatb.2015.05.027
  33. M. Ji and Z. Wei, A review of water management in polymer electrolyte membrane fuel cells, Energies, 2, 1057-1106 (2009). https://doi.org/10.3390/en20401057
  34. Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Appl. Energy, 88, 981-1007 (2011). https://doi.org/10.1016/j.apenergy.2010.09.030
  35. X.-Z. Yuan, H. Li, S. Zhang, J. Martin, and H. Wang, A review of polymer electrolyte membrane fuel cell durability test protocols, J. Power Sources, 196, 9107-9116 (2011). https://doi.org/10.1016/j.jpowsour.2011.07.082
  36. J. Park, H. Oh, T. Ha, Y. I. Lee, and K. Min, A review of the gas diffusion layer in proton exchange membrane fuel cells: Durability and degradation, Appl. Energy, 155, 866-880 (2015). https://doi.org/10.1016/j.apenergy.2015.06.068
  37. B. G. Pollet, The use of power ultrasound for the production of PEMFC and PEMWE catalysts and low-Pt loading and high-performing electrodes, Catalysts, 9, 246 (2019). https://doi.org/10.3390/catal9030246
  38. Z. Kang, G. Yang, J. Mo, Y. Li, S. Yu, D. A. Cullen, S. T. Retterer, T. J. Toops, G. Bender, and B. S. Pivovar, Novel thin/tunable gas diffusion electrodes with ultra-low catalyst loading for hydrogen evolution reactions in proton exchange membrane electrolyzer cells, Nano Energy, 47, 434-441 (2018). https://doi.org/10.1016/j.nanoen.2018.03.015
  39. Q. Feng, G. Liu, B. Wei, Z. Zhang, H. Li, and H. Wang, A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies, J. Power Sources, 366, 33-55 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.006
  40. F. Khatib, T. Wilberforce, O. Ijaodola, E. Ogungbemi, Z. El-Hassan, A. Durrant, J. Thompson, and A. Olabi, Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: A review, Renew. Sustain. Energy Rev., 111, 1-14 (2019). https://doi.org/10.1016/j.rser.2019.05.007
  41. M. Buhler, P. Holzapfel, D. McLaughlin, and S. Thiele, From catalyst coated membranes to porous transport electrode based configurations in PEM water electrolyzers, J. Electrochem. Soc., 166, F1070 (2019). https://doi.org/10.1149/2.0581914jes
  42. A. Nouri-Khorasani, E. T. Ojong, T. Smolinka, and D. P. Wilkinson, Model of oxygen bubbles and performance impact in the porous transport layer of PEM water electrolysis cells, Int. J. Hydrog. Energy, 42, 28665-28680 (2017). https://doi.org/10.1016/j.ijhydene.2017.09.167
  43. P. Lettenmeier, S. Kolb, N. Sata, A. Fallisch, L. Zielke, S. Thiele, A.-S. Gago, and K. A. Friedrich, Comprehensive investigation of novel pore-graded gas diffusion layers for high-performance and cost-effective proton exchange membrane electrolyzers, Energy Environ. Sci., 10, 2521-2533 (2017). https://doi.org/10.1039/C7EE01240C
  44. J. Lopata, Z. Kang, J. Young, G. Bender, J. Weidner, and S. Shimpalee, Effects of the transport/catalyst layer interface and catalyst loading on mass and charge transport phenomena in polymer electrolyte membrane water electrolysis devices, J. Electrochem. Soc., 167, 064507 (2020). https://doi.org/10.1149/1945-7111/ab7f87
  45. R. Omrani, and B. Shabani, Gas diffusion layer modifications and treatments for improving the performance of proton exchange membrane fuel cells and electrolysers: A review, Int. J. Hydrog. Energy, 42, 28515-28536 (2017). https://doi.org/10.1016/j.ijhydene.2017.09.132
  46. J. Mo, R. R. Dehoff, W. H. Peter, T. J. Toops, J. B. Green Jr, and F.-Y. Zhang, Additive manufacturing of liquid/gas diffusion layers for low-cost and high-efficiency hydrogen production, Int. J. Hydrog. Energy, 41, 3128-3135 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.111
  47. J. O. Majasan, F. Iacoviello, P. R. Shearing, and D. J. Brett, Effect of microstructure of porous transport layer on performance in polymer electrolyte membrane water electrolyser, Energy Procedia, 151, 111-119 (2018). https://doi.org/10.1016/j.egypro.2018.09.035