References
- D. Applebaum: Levy processes and stochastic calculus. Cambridge Studies in Advanced Mathematics, 93, Cambridge University Press, Cambridge, 2004.
- J. Bertoin: Subordinators: examples and applications. Lectures on probability theory and statistics (Saint-Flour, 1997), 1-91, Lecture Notes in Math., 1717, Springer, Berlin.
- M. D. Brue: A Functional Transform for Feynman Integrals Similar to the Fourier Transform. Ph.D. Thesis, University of Minnesota, Minneapolis, 1972.
- R.H. Cameron & D.A. Storvick: An L2 analytic Fourier-Feynman transform. Michigan Math. J. 23 (1976), 1-30.
- S.J. Chang, J.G. Choi & D. Skoug: Generalized Fourier-Feynman transforms, convolution products, and first variations on function space. Rocky Mountain J. Math. 40 (2010), 761-788. https://doi.org/10.1216/RMJ-2010-40-3-761
- S.J. Chang, J.G. Choi & D. Skoug: Integration by parts formulas involving generalized Fourier-Feynman transforms on function space. Trans. Amer. Math. Soc. 355 (2003), 2925-2948. https://doi.org/10.1090/S0002-9947-03-03256-2
- S.J. Chang & J.G. Choi: Rotation of Gaussian paths on Wiener space with applications. Banach J. Math. Anal. 12 (2018), 651-672. https://doi.org/10.1215/17358787-2017-0057
- S.J. Chang, H.S. Chung & I.Y. Lee: A new approach method to obtain the L1 generalized analytic Fourier-Feynman transform. Integral Transforms Spec. Funct. 29 (2018), 745-760. https://doi.org/10.1080/10652469.2018.1497024
- C.S. Deng & R.L. Schilling: On a Cameron-Martin type quasi-invariance theorem and applications to subordinate Brownian motion. Stoch. Anal. Appl. 33 (2015), 975-993. https://doi.org/10.1080/07362994.2015.1061439
- G.W. Johnson & D.L. Skoug: An Lp analytic Fourier-Feynman transform. Michigan Math. J. 26 (1979), 103-127.
- J.G. Kim & et al. :Relationships among transforms, convolutions, and first variations. Int. J. Math. Math. Sci. 22 (1999), 191-204. https://doi.org/10.1155/S0161171299221916
- D. Skoug & D. Storvick: A survey of results involving transforms and convolutions in function space. Rocky Mountain J. Math. 34 (2004), 1147-1175. https://doi.org/10.1216/rmjm/1181069848
- R.L. Schilling, R. Song & Z. Vondracek: Bernstein functions. second edition, De Gruyter Studies in Mathematics, 37, Walter de Gruyter & Co., Berlin, 2012.