DOI QR코드

DOI QR Code

Regular pattern design using tartan proportions and grid manipulations

  • Wang, Chaoran (Lancaster Institute for the Contemporary Arts, Lancaster University) ;
  • Hann, Michael A. (School of Design, University of Leeds)
  • Received : 2020.05.12
  • Accepted : 2021.02.01
  • Published : 2021.12.31

Abstract

Tartan, the woven, checked, and wool textile considered by many to be originally from Scotland, has in fact been in use in a range of forms across numerous cultures and during various historical periods. The characteristic checked feature is due to the assembly of different coloured threads in both warp and weft directions which intersect at 90 degrees in a combination known as a sett. For well over one hundred years, different setts and thus different colour combinations have been associated closely with different geographical regions within Scotland, as well as different clans or families. Tartan-type textiles have reached popularity at various times and those have often been a predicted fashion trend suggested, for example, by contributors to fashion gatherings such as Premier Vision in Paris. Often proposed designs are best considered based on tartan combinations rather than simple reproductions. Promotional terms such as "patched checks" or "textured checks" have been common, and often these have been derived from tartan-type constructions. This paper explores novel pattern design methods by identifying the underlying grid structures and proportions exhibited by various well-known tartan setts. The possibility of pattern development from tartan grids and their manipulations is thus the focus of attention. An insight into the methodology associated with the production of original pattern designs is thus provided.

Keywords

References

  1. Adams, M. (1989). Beyond symmetry in middle African design. African Arts, 23(1), 34-43. https://doi.org/10.2307/3336798
  2. Adanur, S. , & Vakalapudi, J. S. (2013). Woven fabric design and analysis in 3D virtual reality. Part 1: Computer aided design an modeling of interlaced structures. Journal of the Textile Institute, 104 (7), 715-723. doi:10.1080/00405000.2012.753698
  3. Arad, N. (1997). Grid-distortion on nonrectangular grids. Computer Aided Geometric Design, 15(5), 475-493. doi:10.1016/S0167-8396(98)00003-X
  4. Azarenok, B. N. (2003). Variational barrier method of adaptive grid generation in hyperbolic problems of gas dynamics. SIAM Journal on Numerical Analysis, 40(2), 651-682. doi:10.1137/S0036142900382727
  5. Bohm, R. , Hufnagl, E. , Kupfer, R. , Engler, T. , Hausding, J. , Cherif, C. , & Hufenbach, W. (2013). Thermoplastic composites reinforced with textile grids: Development of a manufacturing chain and experimental characterizations. Apply Compos Mater, 20, 1077-1096. doi:10.1007/s10443-013-9319-6
  6. Clan. (2016). MacKeane family. Retrieved February 10, 2021, from https://clan.com/families?search=mackeane+adapted+from+google
  7. Collins, P. (1962). The origins of graph paper as an influence on architectural design. Journal of the Society of Architectural Historians, 21(4), 159-162. doi:10.2307/988076
  8. Coltman, V. (2010). Party-coloured plaid? Portraits of eighteenth-century scots in tartan. Textile History, 41(2), 182-216. doi:10.1179/174329510X12798919710635
  9. Crawford, R. L. (1983). Grid systems for recording specimen collection localities in North America. Systematic Biology, 32(4), 389-402. doi:10.1093/sysbio/32.4.389
  10. Damyanovich, A. Z. (2018). Design and implementation of a 3D-MR/CT geometric image distortion phantom/analysis system for stereotactic radiosurgery. Physics in Medicine & Biology, 63(7), 1-15. https://doi.org/10.1088/1361-6560/aab33e
  11. Davies, R. L. (1974). Grids: The American census mapping system. Area, 6(3), 232-235.
  12. Dickens, C. (1873). Clan tartan and plaids. London, 10, 177-180.
  13. Grossman, E. , & Boykin, M. A. (1988). Perceiving the grid: Weaving the tartan plaid. Art Education, 41(3), 14-17. https://doi.org/10.2307/3193096
  14. Guilmain, J. (1985). The composition of the first cross page of the lindisfarne gospels: 'Square schematism' and the hiberno-saxon aesthetic. The Art Bulletin, 67(4), 535-547. doi:10.1080/00043079.1985.10788291
  15. Guilmain, J. (1987). The geometry of the cross-carpet pages in the lindisfarne gospels. Speculum, 62(1), 21-52. doi:10.2307/2852565
  16. Hann, M. , & Wang, C. (2016). Symmetry, ratio and proportion in Scottish clan tartans -Templates for modern designers. The Research Journal of the Costume Culture, 24(6), 186-191. doi:10.7741/rjcc.2016.24.6.873
  17. Hann, M. A. (2012). Structure and form in design: Critical ideas for creative practice. Oxford: Berg.
  18. Hausding, J. , Lorenz, E. , Ortlepp, R. , Lundahl, A. , & Cherif, C. (2011). Application of stitch-bonded multi-plies made by using the extended warp knitting process: Reinforcements with symmetrical layer arrangement for concrete. Journal of the Textile Institute, 102(8), 726-738. doi:10.1080/00405000.2010.515729
  19. Hu, G. , Luo, Y. , Ding, X. , Guo, L. , Jie, B. , Zheng, X. , & Cai, G. (2017). Alignment of grid points. Optik, 131, 279-286. doi:10.1016/j.ijleo.2016.11.058
  20. Jacobson, D. M. (1986). Hadrianic architecture and geometry. American Journal of Archaeology, 90(1), 69-85. doi:10.2307/505986
  21. Johnson, A. , & Martin, J. D. (1998). The secret of anamorphic art. The Mathematics Teacher, 91(1), 24-32. https://doi.org/10.5951/MT.91.1.0024
  22. Liu, S. , & Zhang, L. (2009). Textile pattern design based on hamilton function transformation. Proceeding of the 2009 First International Workshop on Education Technology and Computer Science, 46, 1080-1082.
  23. Lu, S. , Mok, P. Y. , & Jin, X. (2014). From design methodology to evolutionary design: An interactive creation of marble-like textile patterns. Engineering Applications of Artificial Intelligence, 32, 124-135. doi:10.1016/j.engappai.2014.02.015
  24. Lu, S. , Mok, P. Y. , & Jin, X. (2017). A new design concept: 3D to 2D textile pattern design for garments. Computer-Aided Design, 89, 35-49. doi:10.1016/j.cad.2017.03.002
  25. Ma, L. , Baciu, G. , Hu, J. , & Zhang, J. (2010). A novel weave pattern encoding method using neighbor information and its applications. Textile Research Journal, 81(6), 632-648. doi:10.1177/0040517510387211
  26. Mackay, R. (1969). The perception of conformality of some map projections. Geographical Review, 59(3), 373-387. doi:10.2307/213482
  27. Michl, J. , & Magnera, T. F. (2002). Two-dimensional supramolecular chemistry with molecular tinkertoys. Proceedings of the National Academy of Sciences of the United States of America, 99(8), 4788-4792. doi:10.1073/pnas.052016299
  28. Myklestad, A. , & Birks, H. J. B. (1993). A numerical analysis of the distribution patterns of Salix L. species in Europe. Journal of Biogeography, 20(1), 1-32. https://doi.org/10.2307/2845736
  29. Peden, D. D. (2004). Wave space art. Leonardo, 37(5), 376-381. doi:10.1162/0024094041955999
  30. Peden, D. D. (2012). Wave space painting with science. Leonardo, 45(3), 207-210. doi:10.1162/LEON_a_00361
  31. Qayum, M. A. , & Naseer, M. (2016). A fast approach for finding design repeat in textile rotary printing for fault detection. The Journal of the Textile Institute, 108(1), 62-65. doi:10.1080/00405000.2015.1135579
  32. Rybicki, T. (2018). EMI shielding and reflection from textile mesh grids compared with analytic models. IEEE Transactions on Electromagnetic Compatibility, 61(2), 372-380. doi:10.1109/TEMC.2018.2830968
  33. Shaw, M. C. (2010). A fresco of a textile pattern at Pylos: The importation of a Minoan artistic technique. British School at Athens Studies, 18, 315-320.
  34. Shin, M. J. (2011). Cultural reinvention: Design management for Korean cultural textile products. Unpublished master's thesis, University of Leeds, UK.
  35. Stewart, D. C. (1950). The setts of the Scottish tartans with descriptive and historical notes. Edinburgh: Oliver and Boyd.
  36. Stewart, D. C. (1974). The setts of the Scottish tartans: With descriptive and historical notes. London: Shepheard-Walwyn.
  37. Urquhart, B. (2000). Tartans, the illustrated identifier to over 140 designs. London: Apple Press.
  38. Wang, J. , Yang, B. , Huang, B. , & Jin, Z. (2012). Design and development of polymeric optical fiber jacquard fabric with dynamic pattern display. Textile Research Journal, 82(10), 967-974. doi:10.1177/0040517511427965
  39. Wikimedia Commons. (2020). Bucahanan tartan (Vestiarium Scoticum). Retrieved February 10, 2021, from https://commons.wikimedia.org/wiki/File:Buchanan_tartan_(Vestiarium_Scoticum).png
  40. Zhang, R. , & Xin, B. (2016). A review of woven fabric pattern recognition based on image processing technology. Research Journal of Textile and Apparel, 20(1), 37-47. doi:10.1108/RJTA-08-2015-0022