Browse > Article
http://dx.doi.org/10.29049/rjcc.2021.29.6.932

Regular pattern design using tartan proportions and grid manipulations  

Wang, Chaoran (Lancaster Institute for the Contemporary Arts, Lancaster University)
Hann, Michael A. (School of Design, University of Leeds)
Publication Information
The Research Journal of the Costume Culture / v.29, no.6, 2021 , pp. 932-948 More about this Journal
Abstract
Tartan, the woven, checked, and wool textile considered by many to be originally from Scotland, has in fact been in use in a range of forms across numerous cultures and during various historical periods. The characteristic checked feature is due to the assembly of different coloured threads in both warp and weft directions which intersect at 90 degrees in a combination known as a sett. For well over one hundred years, different setts and thus different colour combinations have been associated closely with different geographical regions within Scotland, as well as different clans or families. Tartan-type textiles have reached popularity at various times and those have often been a predicted fashion trend suggested, for example, by contributors to fashion gatherings such as Premier Vision in Paris. Often proposed designs are best considered based on tartan combinations rather than simple reproductions. Promotional terms such as "patched checks" or "textured checks" have been common, and often these have been derived from tartan-type constructions. This paper explores novel pattern design methods by identifying the underlying grid structures and proportions exhibited by various well-known tartan setts. The possibility of pattern development from tartan grids and their manipulations is thus the focus of attention. An insight into the methodology associated with the production of original pattern designs is thus provided.
Keywords
woven textiles; setts; tartan; grids; pattern design;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Rybicki, T. (2018). EMI shielding and reflection from textile mesh grids compared with analytic models. IEEE Transactions on Electromagnetic Compatibility, 61(2), 372-380. doi:10.1109/TEMC.2018.2830968   DOI
2 Shaw, M. C. (2010). A fresco of a textile pattern at Pylos: The importation of a Minoan artistic technique. British School at Athens Studies, 18, 315-320.
3 Stewart, D. C. (1974). The setts of the Scottish tartans: With descriptive and historical notes. London: Shepheard-Walwyn.
4 Urquhart, B. (2000). Tartans, the illustrated identifier to over 140 designs. London: Apple Press.
5 Wikimedia Commons. (2020). Bucahanan tartan (Vestiarium Scoticum). Retrieved February 10, 2021, from https://commons.wikimedia.org/wiki/File:Buchanan_tartan_(Vestiarium_Scoticum).png
6 Zhang, R. , & Xin, B. (2016). A review of woven fabric pattern recognition based on image processing technology. Research Journal of Textile and Apparel, 20(1), 37-47. doi:10.1108/RJTA-08-2015-0022   DOI
7 Clan. (2016). MacKeane family. Retrieved February 10, 2021, from https://clan.com/families?search=mackeane+adapted+from+google
8 Collins, P. (1962). The origins of graph paper as an influence on architectural design. Journal of the Society of Architectural Historians, 21(4), 159-162. doi:10.2307/988076   DOI
9 Coltman, V. (2010). Party-coloured plaid? Portraits of eighteenth-century scots in tartan. Textile History, 41(2), 182-216. doi:10.1179/174329510X12798919710635   DOI
10 Crawford, R. L. (1983). Grid systems for recording specimen collection localities in North America. Systematic Biology, 32(4), 389-402. doi:10.1093/sysbio/32.4.389   DOI
11 Davies, R. L. (1974). Grids: The American census mapping system. Area, 6(3), 232-235.
12 Dickens, C. (1873). Clan tartan and plaids. London, 10, 177-180.
13 Guilmain, J. (1985). The composition of the first cross page of the lindisfarne gospels: 'Square schematism' and the hiberno-saxon aesthetic. The Art Bulletin, 67(4), 535-547. doi:10.1080/00043079.1985.10788291   DOI
14 Hann, M. , & Wang, C. (2016). Symmetry, ratio and proportion in Scottish clan tartans -Templates for modern designers. The Research Journal of the Costume Culture, 24(6), 186-191. doi:10.7741/rjcc.2016.24.6.873   DOI
15 Hann, M. A. (2012). Structure and form in design: Critical ideas for creative practice. Oxford: Berg.
16 Hu, G. , Luo, Y. , Ding, X. , Guo, L. , Jie, B. , Zheng, X. , & Cai, G. (2017). Alignment of grid points. Optik, 131, 279-286. doi:10.1016/j.ijleo.2016.11.058   DOI
17 Damyanovich, A. Z. (2018). Design and implementation of a 3D-MR/CT geometric image distortion phantom/analysis system for stereotactic radiosurgery. Physics in Medicine & Biology, 63(7), 1-15.   DOI
18 Jacobson, D. M. (1986). Hadrianic architecture and geometry. American Journal of Archaeology, 90(1), 69-85. doi:10.2307/505986   DOI
19 Johnson, A. , & Martin, J. D. (1998). The secret of anamorphic art. The Mathematics Teacher, 91(1), 24-32.   DOI
20 Liu, S. , & Zhang, L. (2009). Textile pattern design based on hamilton function transformation. Proceeding of the 2009 First International Workshop on Education Technology and Computer Science, 46, 1080-1082.
21 Lu, S. , Mok, P. Y. , & Jin, X. (2014). From design methodology to evolutionary design: An interactive creation of marble-like textile patterns. Engineering Applications of Artificial Intelligence, 32, 124-135. doi:10.1016/j.engappai.2014.02.015   DOI
22 Adams, M. (1989). Beyond symmetry in middle African design. African Arts, 23(1), 34-43.   DOI
23 Adanur, S. , & Vakalapudi, J. S. (2013). Woven fabric design and analysis in 3D virtual reality. Part 1: Computer aided design an modeling of interlaced structures. Journal of the Textile Institute, 104 (7), 715-723. doi:10.1080/00405000.2012.753698   DOI
24 Arad, N. (1997). Grid-distortion on nonrectangular grids. Computer Aided Geometric Design, 15(5), 475-493. doi:10.1016/S0167-8396(98)00003-X   DOI
25 Azarenok, B. N. (2003). Variational barrier method of adaptive grid generation in hyperbolic problems of gas dynamics. SIAM Journal on Numerical Analysis, 40(2), 651-682. doi:10.1137/S0036142900382727   DOI
26 Bohm, R. , Hufnagl, E. , Kupfer, R. , Engler, T. , Hausding, J. , Cherif, C. , & Hufenbach, W. (2013). Thermoplastic composites reinforced with textile grids: Development of a manufacturing chain and experimental characterizations. Apply Compos Mater, 20, 1077-1096. doi:10.1007/s10443-013-9319-6   DOI
27 Guilmain, J. (1987). The geometry of the cross-carpet pages in the lindisfarne gospels. Speculum, 62(1), 21-52. doi:10.2307/2852565   DOI
28 Wang, J. , Yang, B. , Huang, B. , & Jin, Z. (2012). Design and development of polymeric optical fiber jacquard fabric with dynamic pattern display. Textile Research Journal, 82(10), 967-974. doi:10.1177/0040517511427965   DOI
29 Lu, S. , Mok, P. Y. , & Jin, X. (2017). A new design concept: 3D to 2D textile pattern design for garments. Computer-Aided Design, 89, 35-49. doi:10.1016/j.cad.2017.03.002   DOI
30 Shin, M. J. (2011). Cultural reinvention: Design management for Korean cultural textile products. Unpublished master's thesis, University of Leeds, UK.
31 Stewart, D. C. (1950). The setts of the Scottish tartans with descriptive and historical notes. Edinburgh: Oliver and Boyd.
32 Hausding, J. , Lorenz, E. , Ortlepp, R. , Lundahl, A. , & Cherif, C. (2011). Application of stitch-bonded multi-plies made by using the extended warp knitting process: Reinforcements with symmetrical layer arrangement for concrete. Journal of the Textile Institute, 102(8), 726-738. doi:10.1080/00405000.2010.515729   DOI
33 Michl, J. , & Magnera, T. F. (2002). Two-dimensional supramolecular chemistry with molecular tinkertoys. Proceedings of the National Academy of Sciences of the United States of America, 99(8), 4788-4792. doi:10.1073/pnas.052016299   DOI
34 Peden, D. D. (2004). Wave space art. Leonardo, 37(5), 376-381. doi:10.1162/0024094041955999   DOI
35 Mackay, R. (1969). The perception of conformality of some map projections. Geographical Review, 59(3), 373-387. doi:10.2307/213482   DOI
36 Myklestad, A. , & Birks, H. J. B. (1993). A numerical analysis of the distribution patterns of Salix L. species in Europe. Journal of Biogeography, 20(1), 1-32.   DOI
37 Peden, D. D. (2012). Wave space painting with science. Leonardo, 45(3), 207-210. doi:10.1162/LEON_a_00361   DOI
38 Qayum, M. A. , & Naseer, M. (2016). A fast approach for finding design repeat in textile rotary printing for fault detection. The Journal of the Textile Institute, 108(1), 62-65. doi:10.1080/00405000.2015.1135579   DOI
39 Grossman, E. , & Boykin, M. A. (1988). Perceiving the grid: Weaving the tartan plaid. Art Education, 41(3), 14-17.   DOI
40 Ma, L. , Baciu, G. , Hu, J. , & Zhang, J. (2010). A novel weave pattern encoding method using neighbor information and its applications. Textile Research Journal, 81(6), 632-648. doi:10.1177/0040517510387211   DOI