DOI QR코드

DOI QR Code

Expected Segmentation of the Chugaryung Fault System Estimated by the Gravity Field Interpretation

추가령단층대의 중력장 데이터 해석

  • 최승찬 (지아이 지반정보연구소) ;
  • 최은경 (지아이 지반정보연구소) ;
  • 김성욱 (지아이 지반정보연구소) ;
  • 이영철 (부산대학교 지질재해.산업자원연구소)
  • Received : 2021.10.20
  • Accepted : 2021.12.21
  • Published : 2021.12.28

Abstract

The three-dimensional distribution of the fault was evaluated using gravity field interpretation such as curvature analysis and Euler deconvolution in the Seoul-Gyeonggi region where the Chugaryeong fault zone was developed. In addition, earthquakes that occurred after 2000 and the location of faults were compared. In Bouguer anomaly of Chugaryeong faults, the Pocheon Fault is an approximately 100 km fault that is extended from the northern part of Gyeonggi Province to the west coast through the central part of Seoul. Considering the frequency of epicenters is high, there is a possibility of an active fault. The Wangsukcheon Fault is divided into the northeast and southwest parts of Seoul, but it shows that the fault is connected underground in the bouguer anomaly. The magnitude 3.0 earthquake that occurred in Siheung city in 2010 occurred in an anticipated fault (aF) that developed in the north-south direction. In the western region of the Dongducheon Fault (≒5,500 m), the density boundary of the rock mass is deeper than that in the eastern region (≒4,000 m), suggesting that the tectonic movements of the western and eastern regions of the Dongducheon Fault is different. The maximum depth of the fracture zone developed in the Dongducheon Fault is about 6,500 m, and it is the deepest in the research area. It is estimated that the fracture zone extends to a depth of about 6,000 m for the Pocheon Fault, about 5,000 m for the Wangsukcheon Fault, and about 6,000 m for the Gyeonggang Fault.

추가령 단층대가 발달하는 서울-경기 지역에서 단층의 3차원적인 규모를 확인하기 위해서, 곡률 분석(Curvature analysis)과 오일러 디콘볼루션(Euler deconvolution) 등의 중력장 해석 방법을 이용하여 잔여 중력이상을 해석하였다. 또한 2000년 이후 발생한 진앙과 비교하여 단열 특성을 비교하였다. 부게이상에서 포천단층은 경기 북부에서 서울의 중심부를 지나서 서해안 지역까지 연결된 약 100 km 단층으로 진앙이 빈도가 높아 활성 단층의 가능성이 있고, 단층을 경계로 동서 방향으로 7 km 정도의 변위가 관찰된다. 왕숙천단층은 서울을 중심으로 북동부와 서남부로 분절되어 있으나 지하에서 연결을 암시하는 단층 분절로 추정되는 중력이상대가 관찰된다. 특히 2010년 시흥에서 발생한 규모 3.0의 지진은 남북 방향으로 발달하는 20 km 길이의 단층에 의한 것으로 판단된다. 동두천단층의 서쪽 지역(≒5,500 m)은 중력경계면이 동쪽 지역(≒4,000 m)보다 깊게 나타나며 이는 동두천단층을 중심으로 서쪽 지역과 동쪽 지역의 지구조적인 운동이 다르다는 것을 시사한다. 동두천단층에서 발달한 파쇄대의 최대 깊이는 약 6,500 m이며 연구 지역에서는 가장 깊다. 포천 단층은 약 6,000 m, 왕숙천 단층은 약 5,000 m, 경강 단층은 약 6,000 m 깊이까지 파쇄대가 연장되는 것으로 판단된다.

Keywords

Acknowledgement

이 연구는 한국연구재단 기초연구사업(2020R1F1A1054863)의 지원으로 수행되었습니다.

References

  1. Choi, K.S., Yang, C.S., Shin, Y.H. and Ok, S.S. (2003) On the improvement of precision in gravity surveying and correction, and a dense Bouguer anomaly in and around the Korean Peninsula. J. Korean Earth Sci. Soc., v.24, p.205-215.
  2. Choi, K.S., Lee, Y.C. and Lim, M. (2007) Precise terrain torrection for gravity measurement considering the earth's curvature. The Journal of the Korean Earth Science Society, v.28(7), p.825-837. doi: 10.5467/JKESS.2007.28.7.825
  3. Choi, S.C., Ryu, I.C. and Lee, Y.C. (2019) An analysis of the intraplate Earthquake(2016M5.8_GY) that occurred in the Gyeongsang Basin in the SE of the Korean Peninsula, based on 3D modelling of the gravity and magnetic Field. Geophys. J. Int., v.217, p.90-107. doi:10.1093/gji/ggz001
  4. Choi, S.C., Ryu, I.C., Lee, Y.C. and Sohn, Y. (2020) Gravity and magnetic field interpretation to detect deep buried paleobasinal fault lines contributing to intraplate earthquakes: a case study from Pohang Basin, SE Korea. Geophys. J. Int., v.220, p.490-500. doi: 10.1093/gji/ggz464
  5. Choi, S.C., Kim, S.W., Choi, E.K., Lee, Y.C. and Ha, S.M. (2021) Gravity Field Interpretation and Underground Structure Modelling as a Method of Setting Horizontal and Vertical Zoning of a Active Fault Core. Econ. Environ. Geol., v.54, p.91-103. doi: 10.9719/EEG.2021.54.1.91
  6. Choi, S.-J., Chwae, U., Lee, H.-K., Song, Y. and Kang, I.-M. (2012) Review on the Chugaryeong Fault. Econ. Environ. Geol., v.45, p.441-446. doi: 10.9719/EEG.2012.45.4.441
  7. Chung, D.H., Song, Y.G., Park, C.Y., Kang, I.-M., Choi, S.-J. and Khulganakhuu, C. (2014) Reactivated Timings of Some Major Faults in the Chugaryeong Fault Zone since the Cretaceous Period. Econ. Environ. Geol., v.47, p.29-38. doi: 10.9719/EEG.2014.47.1.29
  8. Degro, T. (1986) Zur Interpretation gravimetrischer und magnetischer Feldgrossen mit Hilfe von ubertragungsfunktionen. Dissertation, Institut fur Geophysik der TU Clausthal, 139p. (unpublished).
  9. Kim, K.-H., Ree, J.-H., Kim, Y.H., Kim, S., Kang, S.Y. and Seo, W. (2018) Assessing whether the 2017 MW5.4 Pohang earthquake in South Korea was an induced event. Science, v.360, p.1007-1009. doi: 10.1126/science.aat6081.
  10. Kim, Y.-S., Kim, T., Kyung, J.B. Cho, C.S., Choi, J.-H. and Choi, C.U. (2017) Preliminary study on rupture mechanism of the 9.12 Gyeongju Earthquake. J. Geol. Soc. Korea, v.53, p.407-422. doi: 10.14770/jgsk.2017.53.3.407
  11. Kim, Y.-S., Son, M., Choi, J.-H., Choi, J.-H., Seong, Y.B. and Lee, J. (2020) Processes and challenges for the production of Korean active faults map. J. Geol. Soc. Korea, v.56, p.113-134. doi: 10.14770/jgsk.2020.56.2.113
  12. Korea institute of Geoscience and mineral resources (KIGAM) (2002) Tectonic Map of Korea (1:1,000,000)
  13. Korea institute of Geoscience and mineral resources (KIGAM) (2014) Regional Geophysical Anomaly Mapping, GP2013-010-2014(2). (in Korean with English abstract)
  14. Korean statistical information service : kosis.kr/index/index.do
  15. Kwon, S., Kim, S.K., Lee, S.H. and Park, K.G. (2012) Identification of the Singal Fault Zone in the Kiheung Reservoir Area by Geotechnical Investigations. Econ. Environ. Geol., v.45, p.295-306. doi: 10.9719/EEG.2012.45.3.295
  16. LaFehr, T.R. (1991) Standardization in gravity reduction. Geophysics, v.56, p.1140-1295. doi.org/10.1190/1.1443137
  17. Lahmeyer, B. (1990) Anwendung der schnellen Fourier transformation und der Quadratischen Programmierung bei der interpretation von Schwellefeldern, Dissertation, FU-Berlin, Berlin.
  18. Li, X. and Gotze, H.J. (2001) Ellipsoid, geoid, gravity, geodesy, and geophysics. Geophysics, v.66, p.1660-1959. doi.org/10.1190/1.1487109
  19. Nationa; earthquake comprehensive information system : necis.kma.go.kr
  20. Park, J., Kim, H.C., Lee, Y., Shim, B.O. and Song, M.Y. (2009) Thermal properties of rocks in the republic of Korea. Econ. Environ. Geol., v.42, p.591-598.
  21. Pasteka, R., Richter, F.P., Karcol, R., Brazda, K. and Hajach, M. (2009) Regularized derivatives of potential fields and their role in semi-automated interpretation methods. Geophys. Prospect., v.57, p.507-516. doi: 10.1111/j.1365-2478.2008.00780.x
  22. Reid, A.B., Allsop, J.M., Granser, H., Millet, A.J. and Somerton, I.W. (1990) Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics, v.55, p.80-91. doi: 10.1190/1.1442774
  23. Roberts, A. (2001) Curvature attributes and their application to 3D interpreted horizons. First Break, v.19, p.85-99. doi: 10.1046/j.0263-5046.2001.00142.x
  24. Shin, Y.H. (2006) Gravity anomaly and the distribution of granitoids in the southern part of the Korean Peninsula. J. Geol. Soc. Korea, v.42, p.383-396.
  25. Sohn, Y., Choi, S.C. and Ryu, I.-C. (2020) Gravity Field Interpretation for the Deep Geological Structure Analysis in Pohang-Ulsan, Southeastern Korean Peninsula. Econ. Environ. Geol., v.53, p.597-608. doi: 10.9719/EEG.2020.53.5.597
  26. Tamura, Y. (1982) A computer program for calculating the tide generating force. Publications of the international latitude observatory, Mizusawa, v.16, p.1-19.
  27. Thomson, D. T. (1982) EULDPH: A new technique for making computer-assisted depth estimates from magnetic data. Geophysics, v.47, p.31-37. doi: 10.1190/1.1441278