• Title/Summary/Keyword: 왕숙천단층

Search Result 3, Processing Time 0.018 seconds

Reactivated Timings of Some Major Faults in the Chugaryeong Fault Zone since the Cretaceous Period (추가령단층대 주요 단층의 백악기 이후 재활동 연대)

  • Chung, Donghoon;Song, Yungoo;Park, Changyun;Kang, Il-Mo;Choi, Sung-Ja;Khulganakhuu, Chuluunbaatar
    • Economic and Environmental Geology
    • /
    • v.47 no.1
    • /
    • pp.29-38
    • /
    • 2014
  • Recently developed illite-age-analysis (IAA) approach has been applied to determine the multiple events for the Singal and Wangsukcheon faults in the Chugaryeong fault belt, Korea. Fault reactivated events during Late Cretaceous to Paleogene events($69.2{\pm}0.3$ Ma and $27.2{\pm}0.5$ Ma) for the Singal fault and of $75.4{\pm}0.8$ Ma for the Wangsukcheon fault were determined by combined approach of the optimized illite-polytype quantification and the K-Ar age-dating of clay fractions separated from the fault clays. These absolute geochronological determinations of the multiple tectonic events recorded in the Chugaryeong fault belt are crucial to establish the tectonic evolution of the Korean Peninsula since Late Cretaceous.

Displacement of Dongducheon and Wangsukcheon Fault Observed by Gravity Field Interpretation (중력장 해석으로 관측된 동두천 및 왕숙천 단층의 변위)

  • Sungchan Choi;Sung-Wook Kim;Eun-Kyeong Choi;Younghong Shin
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.73-81
    • /
    • 2024
  • To estimate the tectonic displacement of the Chugaryeong Fault System (CFS), gravity surveys were conducted along the Dongducheon fault (DF) and the Wangsukcheon fault (WF). A total of 1,100 stations for the DF and WF regions have been added to the current gravity database. The results of the gravity interpretation indicate that (1) the dextral displacement of the DF is about 3,000 m, similar to the tectonic displacement (2,900-3,100 m) shown in the geological map. (2) The dextral displacement of the WF is about 3,200 m. (3) Taken together, the tectonic displacement of the CFS is estimated to be about 3,000 m on average. To investigate more accurate tectonic displacement of the CFS, further gravity surveys is planned for the Pocheon fault, Gyeonggang fault, and Inje fault.

Expected Segmentation of the Chugaryung Fault System Estimated by the Gravity Field Interpretation (추가령단층대의 중력장 데이터 해석)

  • Choi, Sungchan;Choi, Eun-Kyeong;Kim, Sung-Wook;Lee, Young-Cheol
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.743-752
    • /
    • 2021
  • The three-dimensional distribution of the fault was evaluated using gravity field interpretation such as curvature analysis and Euler deconvolution in the Seoul-Gyeonggi region where the Chugaryeong fault zone was developed. In addition, earthquakes that occurred after 2000 and the location of faults were compared. In Bouguer anomaly of Chugaryeong faults, the Pocheon Fault is an approximately 100 km fault that is extended from the northern part of Gyeonggi Province to the west coast through the central part of Seoul. Considering the frequency of epicenters is high, there is a possibility of an active fault. The Wangsukcheon Fault is divided into the northeast and southwest parts of Seoul, but it shows that the fault is connected underground in the bouguer anomaly. The magnitude 3.0 earthquake that occurred in Siheung city in 2010 occurred in an anticipated fault (aF) that developed in the north-south direction. In the western region of the Dongducheon Fault (≒5,500 m), the density boundary of the rock mass is deeper than that in the eastern region (≒4,000 m), suggesting that the tectonic movements of the western and eastern regions of the Dongducheon Fault is different. The maximum depth of the fracture zone developed in the Dongducheon Fault is about 6,500 m, and it is the deepest in the research area. It is estimated that the fracture zone extends to a depth of about 6,000 m for the Pocheon Fault, about 5,000 m for the Wangsukcheon Fault, and about 6,000 m for the Gyeonggang Fault.