DOI QR코드

DOI QR Code

The Surface Distribution of Dissolved Gases in the Southwestern East Sea: Comparison of the Primary Production and CO2 Absorption in Summer between Coastal Areas and the Ulleung Basin

동해 남서부해역의 표층 용존 기체 분포: 여름철 연안과 울릉분지의 일차생산력과 CO2 흡수 비교

  • LEE, INHEE (Department of Oceanography, Pusan National University) ;
  • HAHM, DOSHIK (Department of Oceanography, Pusan National University)
  • Received : 2021.09.11
  • Accepted : 2021.11.03
  • Published : 2021.11.30

Abstract

The global coastal region is considered as a sink for atmospheric CO2. Since most of the studies in the East Sea focused on the Ulleung Basin, the importance of coastal region for carbon cycle has been overlooked. In this study, we compared the biological pump and CO2 absorption between the Ulleung Basin and coastal region by surface measurements of biological O2 supersaturation (𝚫O2/Ar) and partial pressure of CO2 (fCO2). Cold and less saline waters in the coastal regions were in contrast with a warm and saline water in the Ulleung Basin. The coastal waters near Samcheok and Pohang showed higher fluorescence, 𝚫O2/Ar, and lower fCO2 than those in the Ulleung Basin, indicating higher primary production and CO2 absorption in the areas. The average net community production estimated by 𝚫O2/Ar were 19 ± 6 and 60 ± 9 mmol O2 m-2d-1 in the Samcheok and Pohang, respectively, 2-7 times higher than that of 8 ± 4 mmol O2 m-2d-1 in the Ulleung Basin. Similarly, the average CO2 flux between the seawater and atmosphere were -17.1 ± 8.9 and -25.8 ± 13.2 mmol C m-2d-1 in the Samcheok and Pohang, respectively, 4-5 times higher than that of -4.7 ± 2.5 mmol C m-2d-1 in the Ulleung Basin. In the Samcheok and Pohang, degrees of N2 saturation were lower by 3% than that the ambient waters, suggesting the possibility of nitrogen fixation by primary producers.

연안은 전 지구 관점에서 대기 이산화탄소를 흡수하는 것으로 평가된다. 그동안 동해의 탄소 순환에 관한 연구들이 울릉분지에 집중되어 있어서 동해 연안이 탄소 순환에 기여하는 역할에 대한 이해는 제한적이다. 본 연구에서는 표층의 생물학적 과포화도(𝚫O2/Ar)와 이산화탄소 분압(fCO2)의 변화를 관측하여 울릉분지와 연안의 생물 펌프 세기 및 탄소 흡수력을 비교하였다. 연안은 저온 저염한 환경으로 고온 고염한 울릉분지와 대비되었다. 삼척과 포항 연안에서는 울릉분지에 비해 높은 생물량과 𝚫O2/Ar, 낮은 fCO2 분포를 보여 연안에서 더 많은 일차 생산이 일어나 용존 CO2 흡수를 촉진한 것으로 나타났다. 삼척과 포항 연안에서 𝚫O2/Ar을 기반으로 추정된 순군집생산(net community production)은 각각 19 ± 6과 60 ± 9 mmol O2 m-2d-1로 울릉분지의 8 ± 4 mmol O2 m-2d-1에 비하여 약 2-7배 가량 활발하게 생물 펌프가 작동하고 있었다. 삼척과 포항 연안의 CO2 교환율은 각각 -17.1 ± 8.9와 -25.8 ± 13.2 mmol C m-2d-1로, 울릉분지의 -4.7 ± 2.5 mmol C m-2d-1보다 약 4배에서 5배 가량 높았다. 삼척과 포항 연안에서는 울릉분지에 비하여 질소포화도가 최대 3% 낮게 나타나 일차생산자에 의한 질소 고정이 일어났을 가능성을 제시하였다.

Keywords

Acknowledgement

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

References

  1. Bender, M., J. Orchardo, M.-L. Dickson, R. Barber and S. Lindley, 1999. In vitro O2 fluxes compared with 14C production and other rate terms during the JGOFS Equatorial Pacific experiment. Deep-Sea Research I, 46(4): 637-654. https://doi.org/10.1016/S0967-0637(98)00080-6
  2. Bender, M., K. Grande, K. Johnson, J. Marra, P.J.L. Williams, J. Sieburth, M. Pilson, C. Langdon, G. Hitchcock, J. Orchardo, C. Hunt, P. Donaghay and K. Heinemann, 1987. A comparison of four methods for determining planktonic community production1. Limnol. Oceanogr, 32(5): 1085-1098. https://doi.org/10.4319/lo.1987.32.5.1085
  3. Cassar, N., B.A. Barnett, M.L. Bender, J. Kaiser, R.C. Hamme and B. Tilbrook, 2009. Continuous High-Frequency Dissolved O2/Ar Measurements by Equilibrator Inlet Mass Spectrometry. Analytical Chemistry, 81: 1855-1864. https://doi.org/10.1021/ac802300u
  4. Cassar, N., W. Tang, H. Gabathuler and K. Huang, 2018. Method for High Frequency Underway N2 Fixation Measurements: Flow-Through Incubation Acetylene Reduction Assays by Cavity Ring Down Laser Absorption Spectroscopy (FARACAS). Analytical Chemistry, 90(4): 2839-2851. https://doi.org/10.1021/acs.analchem.7b04977
  5. Choi, Y., D. Kim, J.H. Noh and D.-J. Kang, 2021. Contribution of changjiang river discharge to CO2 uptake capacity of the northern east china sea in august 2016. Continental Shelf Research, 215: 104336. https://doi.org/10.1016/j.csr.2020.104336
  6. Craig, H. and T. Hayward, 1987. Oxygen supersaturation in the ocean: Biological versus physical contributions. Science, 235(4785): 199-202. https://doi.org/10.1126/science.235.4785.199
  7. Dinauer, A. and A. Mucci, 2018. Distinguishing between physical and biological controls on the spatial variability of pCO2: A novel approach using OMP water mass analysis (St. Lawrence, Canada). Marine Chemistry, 204: 107-120. https://doi.org/10.1016/j.marchem.2018.03.007
  8. Ducklow, H.W. and S.L. McCallister, 2004. The biogeochemistry of carbon dioxide in the coastal oceans. The Sea, 13, edited by A. R. Robinson, J. McCarthy, and B. J. Rothschild, Harvard University Press Cambridge, MA, pp. 269-315.
  9. Ferron, S., D.A. del Valle, K.M. Bjorkman, P.D. Quay, M.J. Church and D.M. Karl, 2016. Application of membrane inlet mass spectrometry to measure aquatic gross primary production by the 18O in vitro method. Limnol. Oceanogr.: Methods, 14(9): 1-13. https://doi.org/10.1002/lom3.10064
  10. Garcia, H. and L. Gordon, 1992. Oxygen solubility in seawater: Better fitting equations. Limnology And Oceanography, 37(6): 1307-1312. https://doi.org/10.4319/lo.1992.37.6.1307
  11. Glueckauf, E., 1951. The composition of atmospheric air, in Compendium of Meteorology, edited by T. F. Malone, Springer, pp. 3-10.
  12. Hahm, D., T.S. Rhee, H.-C. Kim, C.J. Jang, Y.S. Kim and J.-H. Park, 2019. An observation of primary production enhanced by coastal upwelling in the southwest East/Japan Sea. Journal of Marine Systems, 195: 30-37. https://doi.org/10.1016/j.jmarsys.2019.03.005
  13. Hahm, D., T.S. Rhee, H.-C. Kim, J. Park, Y.N. Kim, H.C. Shin and S. Lee, 2014. Spatial and temporal variation of net community production and its regulating factors in the Amundsen Sea, Antarctica. Journal of Geophysical Research, 119(5): 2815-2826. https://doi.org/10.1002/2013jc009762
  14. Hamme, R. and S. Emerson, 2002. Mechanisms controlling the global oceanic distribution of the inert gases argon, nitrogen and neon. Geophys-ical Research Letters, 29(23): 2120.
  15. Hamme, R.C. and S.R. Emerson, 2004. The solubility of neon, nitrogen and argon in distilled water and seawater. Deep-Sea Research I, 51(11): 1517-1528. https://doi.org/10.1016/j.dsr.2004.06.009
  16. Hamme, R.C. and S.R. Emerson, 2013. Deep-sea nutrient loss inferred from the marine dissolved N2/Ar ratio. Geophysical Research Letters, 40(6): 1149-1153. https://doi.org/10.1002/grl.50275
  17. Johnson, K.S., J.N. Plant, S.C. Riser and D. Gilbert, 2015. Air Oxygen Calibration of Oxygen Optodes on a Profiling Float Array. Journal Of Atmospheric And Oceanic Technology, 32(11): 2160-2172. https://doi.org/10.1175/jtech-d-15-0101.1
  18. Kana, T., C. Darkangelo, M. Hunt, J. Oldham, G. Bennett and J. Cornwell, 1994. Membrane inlet mass spectrometer for rapid high-precision determination of N2, O2, and Ar in environmental water samples. Anal. Chem., 66(23): 4166-4170. https://doi.org/10.1021/ac00095a009
  19. Kim, J.-Y., D.-J. Kang, T. Lee and K.-R. Kim, 2014. Long-term trend of CO2 and ocean acidification in the surface water of the Ulleung Basin, the East/Japan Sea inferred from the underway observational data. Biogeosciences, 11(9): 2443-2454. https://doi.org/10.5194/bg-11-2443-2014
  20. Kim, S.-Y., S. Jeong and T. Lee, 2019. Calcium carbonate saturation state in the ulleung basin, east sea. The Sea, 24(3): 389-399.
  21. Klawonn, I., G. Lavik, P. Boning, H. Marchant, J. Dekaezemacker, W. Mohr and H. Ploug, 2015. Simple approach for the preparation of 15-15N2-enriched water for nitrogen fixation assessments: evaluation, application and recommendations. Frontiers in Microbiology, 6: 769. https://doi.org/10.3389/fmicb.2015.00769
  22. Kroopnick, P. and H. Craig, 1972. Atmospheric oxygen: Isotopic composition and solubility fractionation. Science, 175(4017): 54-55. https://doi.org/10.1126/science.175.4017.54
  23. Kwak, J.H., J. Hwang, E.J. Choy, H.J. Park, D.-J. Kang, T. Lee, K.-I. Chang, K.-R. Kim and C.-K. Kang, 2013. High primary productivity and f-ratio in summer in the Ulleung basin of the East/Japan Sea. Deep Sea Research I, 79: 74-85. https://doi.org/10.1016/j.dsr.2013.05.011
  24. Langdon, C., 2010. Determination of dissolved oxygen in seawater by Winkler titration using the amperometric technique. GO-SHIP Repeat Hydrography Manual. IOCCP Report No. 14, ICPO Publication Series No. 134.
  25. Laws, E.A., 1991. Photosynthetic quotients, new production and net community production in the open ocean. Deep-Sea Research, 38(1): 143-167. https://doi.org/10.1016/0198-0149(91)90059-O
  26. Levitus, S. and T.P. Boyer, 1994. World Ocean Atlas 1994. Volume 4. Temperature, Tech. rep.
  27. Lim, S., C.J. Jang, I.S. Oh and J. Park, 2012. Climatology of the mixed layer depth in the east/japan sea. Journal of Marine Systems, 96-97: 1-14. https://doi.org/10.1016/j.jmarsys.2012.01.003
  28. Pierrot, D., C. Neill, K. Sullivan, R. Castle, R. Wanninkhof, H. Luger, T. Johannessen, A. Olsen, R.A. Feely and C.E. Cosca, 2009. Recommendations for autonomous underway pCO2 measuring systems and data-reduction routines. Deep Sea Research Part II, 56(8): 512-522. https://doi.org/10.1016/j.dsr2.2008.12.005
  29. Pierrot, D., E. Lewis and D.W.R. Wallace, 2006. CO2SYS DOS Program Developed for CO2System Calculations. ORNL/CDIAC105, Carbon Dioxide Information Analysis Center. Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, California.
  30. Pilson, M.E., 2013. An Introduction to the Chemistry of the Sea, Cambridge University Press.
  31. Reuer, M., B. Barnett, M. Bender, P. Falkowski and M. Hendricks, 2007. New estimates of Southern Ocean biological production rates from O2/Ar ratios and the triple isotope composition of O2. Deep-Sea Research Part I, 54(6): 951-974. https://doi.org/10.1016/j.dsr.2007.02.007
  32. Sato, T., T. Shiozaki, Y. Taniuchi, H. Kasai and K. Takahashi, 2021. Nitrogen fixation and diazotroph community in the subarctic sea of japan and sea of okhotsk. Journal of Geophysical Research: Oceans, 126(4).
  33. Schmale, O., M. Karle, M. Glockzin and B. Schneider, 2019. Potential of Nitrogen/Argon Analysis in Surface Waters in the Examination of Areal Nitrogen Deficits Caused by Nitrogen Fixation. Environmental Science & Technology, 53(12): 6869-6876. https://doi.org/10.1021/acs.est.8b06665
  34. Takahashi, T., S.C. Sutherland, C. Sweeney, A. Poisson, N. Metzl, B. Tilbrook, N. Bates, R. Wanninkhof, R.A. Feely, C. Sabine, J. Olafs-son and Y. Nojiri, 2002. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Research Part II: Topical Studies in Oceanography, 49(9): 1601-1622. https://doi.org/10.1016/S0967-0645(02)00003-6
  35. Tang, W., S. Wang, D. Fonseca-Batista, F. Dehairs, S. Gifford, A.G. Gon- zalez, M. Gallinari, H. Planquette, G. Sarthou and N. Cassar, 2019. Revisiting the distribution of oceanic N2 fixation and estimating diazotrophic contribution to marine production. Nature Communications, 10(1): 831. https://doi.org/10.1038/s41467-019-08640-0
  36. Teeter, L., R.C. Hamme, D. Ianson and L. Bianucci, 2018. Accurate estimation of net community production from O2/ar measurements. Global Biogeochemical Cycles, 32(8): 1163-1181.
  37. Volk, T. and M.I. Hoffert, 1985. Ocean Carbon Pumps: Analysis of Relative Strengths and Efficiencies in Ocean-Driven Atmospheric CO2 Changes, in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, American Geophysical Union, Washington, D.C., pp. 99-110.
  38. Wanninkhof, R., 2014. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr.: Methods, 12(6): 351-362. https://doi.org/10.4319/lom.2014.12.351
  39. Weiss, R., 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry, 2(3): 203-215. https://doi.org/10.1016/0304-4203(74)90015-2
  40. Xiong, T.-Q., P.-F. Liu, W.-D. Zhai, Y. Bai, D. Liu, D. Qi, N. Zheng, J.-W. Liu, X.-H. Guo, T.-Y. Cheng, H.-X. Zhang, S.-Y. Wang, X.-Q. He, J.-F. Chen and R. Li, 2019. Export flux, biogeochemical effects, and the fate of a terrestrial carbonate system: From changjiang (yangtze river) estuary to the east china sea. Earth and Space Science, 6(11): 2115-2141. https://doi.org/10.1029/2019EA000679
  41. Yamada, K., J. Ishizaka and H. Nagata, 2005. Spatial and Temporal Variability of Satellite Primary Production in the Japan Sea from 1998 to 2002. Journal of Oceanography, 61(5): 857-869. https://doi.org/10.1007/s10872-006-0005-2
  42. Yun, J.-Y., L. Magaard, K. Kim, C.-W. Shin, C. Kim and S.-K. Byun, 2004. Spatial and temporal variability of the north korean cold water leading to the near-bottom cold water intrusion in korea strait. Progress in Oceanography, 60(1): 99-131. https://doi.org/10.1016/j.pocean.2003.11.004