DOI QR코드

DOI QR Code

Experimental Transplantation for the Restoration of Seagrass, Zostera marina L. Bed Around Sinyangseopji Beach in Bangdu Bay, Jeju Island

제주 신양섭지해수욕장 주변 방두만 거머리말 군락 복원을 위한 실험적 이식

  • 이형우 (제주대학교 기초과학연구소) ;
  • 강정찬 (제주대학교 기초과학연구소) ;
  • 박정임 (해양생태기술연구소 기업부설연구소) ;
  • 김명숙 (제주대학교 생물학과)
  • Received : 2021.07.01
  • Accepted : 2021.09.08
  • Published : 2021.11.30

Abstract

Eelgrass, Zostera marina L., was widely distributed around Sinyangseopji Beach in Bangdu Bay, on the eastern coast of Jeju Island, until breakwater construction in the late 1990s resulted in its complete loss. Six experimental sites were identified for restoration of the Z. marina bed in Bangdu Bay. Using the staple method, 500 Z. marina shoots were transplanted at each site in January 2019 and 2020. The transplants, along with environmental parameters, were monitored for 10 months following transplantation. There were significant differences in underwater irradiance, water temperature, and salinity among the sites, but all were suitable for Z. marina growth. The Ulva species, an opportunistic alga, appeared in spring and accumulated during summer at all sites; however, there was no significant effect of Ulva species on the survival and growth of the eelgrass transplants. Most of the transplanted Z. marina survived, and after 3 months, the density increased by 112.5-300% due to vegetative propagation, with a rapid rate of increase observed during spring and early summer at all sites. For 1-2 months after transplanting, the Z. marina shoots showed signs of transplant shock, after which the shoot density increased at all sites, confirming that all transplants adapted well to the new environment. However, in both 2019 and 2020, during late summer to early fall, the sites experienced heavy damage from typoons (twice in 2019 and three times in 2020) that hit Bangdu Bay. The transplants at two sites located in the center of Bangdu Bay were completely destroyed, but those at three sites located to the west of the bay showed a 192-312% increase in density. Thus, we confirmed that the Bangdu Bay Z. marina bed can be restored, with the highest probability of success for Z. marina restoration on the western side of Bangdu Bay, which is protected from typhoons.

제주도 동쪽에 위치한 신양섭지해수욕장 주변 방두만에는 과거 거머리말이 넓게 서식하였으나, 1990년대 방파제 공사 이후 모두 소실되었다. 본 연구는 방두만의 거머리말 서식지 복원을 위한 이식 적지 선정을 위해 2019년 1월과 2020년 1월에 방두만의 6개소에 거머리말을 이식한 후 생육 환경과 이식된 거머리말을 10개월간 월별 조사하였다. 거머리말 이식은 철사고정법을 이용하여 각 장소 당 500개체를 이식하였다. 이식된 거머리말은 모든 장소에서 대부분 생존하여 영양 번식으로 인한 밀도증가가 나타났다. 각 장소의 환경 즉, 수중광량, 수온과 염분농도는 유의한 차이가 나타났지만 모두 거머리말 생육에 적합하였다. 모든 장소에서 봄부터 파래가 출현하여 여름 동안 누적되었으나, 거머리말의 생존과 생장에는 유의한 영향을 미치지 않았다. 이식된 거머리말은 이식 3개월 후 112.5~300%의 밀도증가율이 나타났으며, 모든 장소에서 봄과 초여름 동안 높은 밀도 증가율을 보였다. 거머리말의 형태는 이식 충격으로 인하여 모든 장소에서 1~2 개월간 감소하였다가 이후 다시 증가하여 새로운 환경에 잘 적응한 것으로 확인되었다. 그러나 이식 후 8~9개월이 경과하는 늦여름부터 초가을 동안 2019년 2회, 2020년 3회의 강력한 태풍이 조사 지역을 관통하였다. 이로 인해 이식 10개월 후 방두만의 중심부에 위치한 2개소의 거머리말은 모두 소실되었으나, 방두만의 서쪽에 위치한 3개소 거머리말의 밀도증가율은 192~312%로 높게 유지되었다. 이로써 방두만의 잘피서식지 조성이 가능함을 알 수 있었고, 이식 거머리말의 밀도 증가율이 높고 태풍에도 안전한 방두만의 서쪽 연안이 생육 적지임을 확인할 수 있었다.

Keywords

Acknowledgement

이 연구가 진행되는 동안 거머리말 이식 및 모니터링을 비롯하여 수중 촬영 등 현장 데이터 수집을 도와준 전문 다이버 현병철, 나경아, 김규선님께 감사드립니다. 본 연구는 해양수산부 재원으로 해양수산과학기술진흥원이 지원하는 제주씨그랜트사업(20170339)에 의해 수행되었습니다.

References

  1. Anton, A., J. Cebrian, C.M. Duarte, K.L. Heck Jr. and J. Goff, 2009. Low impact of Hurricane Katrina on seagrass community structure and functioning in the northern Gulf of Mexico. Bull. Mar. Sci., 85: 45e59.
  2. Davis, R.C. and F.T. Short, 1997. Restoring eelgrass, Zostera marina L., habitat using a new transplanting technique: the horizontal rhizome method. Aquat. Bot., 59: 1-15. https://doi.org/10.1016/S0304-3770(97)00034-X
  3. Eriander, L., 2017. Light requirements for successful restoration of eelgrass (Zostera marina L.) in a high latitude environment - Acclimatization, growth and carbohydrate storage. J. Exp. Mar. Biol. Ecol., 496: 37-48. https://doi.org/10.1016/j.jembe.2017.07.010
  4. Fernandez-Torquemada, Y. and J. Sanchez-Lizaso, 2005. Effects of salinity on leaf growth and survival of the Mediterranean seagrass Posidonia oceanica (L.) Delile. J. Exp. Mar. Biol. Ecol., 320: 57-63. https://doi.org/10.1016/j.jembe.2004.12.019
  5. FIRA (Korea Fisheries Resources Agency), 2019. The process for the marine forest project. 239 pp.
  6. Fonseca, M.S., W.J. Kenworthy, F.X. Courtney and M.O. Hall, 1994. Seagrass planting in the southeastern United States: methods for accelerated habitat development. Restor. Ecol., 2: 198-212. https://doi.org/10.1111/j.1526-100X.1994.tb00067.x
  7. Hovel, K.A., M.S. Fonseca, D.L. Meyer, W.J. Kenworthy and P.G. Whitfield, 2002. Effects of seagrass landscape structure, structural complexity and hydrodynamic regime on macrofaunal densities in North Carolina seagrass beds. Mar. Ecol. Prog. Ser., 243: 11-24. https://doi.org/10.3354/meps243011
  8. Hwang, D.W. and B.S. Koh, 2012. Temporal variations of submarine groundwater discharge (SGD) and SGD-driven nutrient inputs in the coastal ocean of Jeju Island. J. Korean Soc. Oceanogr., 17: 252-261.
  9. Kim, K., J.K. Choi, J.H. Ryu, H.J. Jeong, K. Lee, M.J. Park and K.Y. Kim, 2015. Observation of typhoon-induced seagrass die-off using remote sensing. Estuar. Coast. Shelf Sci., 154: 111-121. https://doi.org/10.1016/j.ecss.2014.12.036
  10. Kim, S.H., Y.K. Kim, S.R. Park, W.T. Li and K.S. Lee, 2012. Growth dynamics of the seagrass Halophila nipponica, recently discovered in temperate coastal waters of the Korean peninsula. Mar. Biol., 159: 255-267. https://doi.org/10.1007/s00227-011-1804-6
  11. Koch, M.S., S.A. Schopmeyer, O.I. Nielsen, C. Kyhn-Hansen and C.J. Madden, 2007. Conceptual model of seagrass die-off in Florida Bay: Links to biogeochemical processes. J. Exp. Mar. Biol. Ecol., 350: 77-88.
  12. Lee, K.S., S.R. Park and J.B. Kim, 2005. Production dynamics of the eelgrass, Zostera marina in two bay systems on the south coast of the Korean peninsula. Mar. Biol., 147: 1091-1108. https://doi.org/10.1007/s00227-005-0011-8
  13. Lee, K.S., S.R. Park and Y.K. Kim, 2007. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: A review. J. Exp. Mar. Biol. Ecol., 350: 144-175. https://doi.org/10.1016/j.jembe.2007.06.016
  14. Li, W.T., J.H. Kim, J.I. Park and K.S. Lee, 2010. Assessing establishment success of Zostera marina transplants through measurements of shoot morphology and growth. Estuar. Coast. Shelf Sci., 88: 377-384. https://doi.org/10.1016/j.ecss.2010.04.017
  15. Li, W.T., S.H. Kim, J.W. Kim, J.H. Kim and K.S. Lee, 2013. An examination of photoacclimatory responses of Zostera marina transplants along a depth gradient for transplant-site selection in a disturbed estuary. Estuar. Coast. Shelf Sci., 118: 72-79. https://doi.org/10.1016/j.ecss.2012.12.022
  16. Meinesz, A., G. Caye, F. Loques and H. Molenaar, 1993. Polymorphism and development of Posidonia oceanica transplanted from different parts of the Mediterranean into the National Park of Port-Cros. Bot. Mar., 36: 209-216.
  17. Min, S.H., T. Lee, S. Kwon, G.S. Park and Y.B. Son, 2020. Monitoring of discharged water from groundwater and land-based aquaculture effluent using CTD data in Shinyang Bangdu Bay, Jeju Island, Korea. Geo Data., 2.1: 30-38.
  18. Nelson, T.A. and A. Lee, 2001. Amanipulative experiment demonstrates that blooms of the macroalga Ulvaria obscura can reduce eelgrass shoot density. Aquat. Bot., 71: 149-154. https://doi.org/10.1016/S0304-3770(01)00183-8
  19. Paling, E.I., M. van Keulen, K.D. Wheeler, J. Phillips and R. Dyhrberg, 2001. Mechanical seagrass transplantation in Western Australia. Ecol. Eng., 16: 331-339. https://doi.org/10.1016/S0925-8574(00)00119-1
  20. Park, J.I. and K.S. Lee, 2007. Site-specific success of three transplanting methods and the effect of planting time on the establishment of Zostera marina transplants. Mar. Pollut. Bull., 54: 1238-1248. https://doi.org/10.1016/j.marpolbul.2007.03.020
  21. Park, J.I., J.B. Kim, K.S. Lee and M.H. Son, 2013. An experimental transplantation to select the optimal site for restoration of the eelgrass Zostera marina in the Taehwa River Estuary. Ocean Sci. J., 48: 311-318. https://doi.org/10.1007/s12601-013-0029-7
  22. Park, J.I., J.Y. Park and M.H. Son, 2012. Seagrass distribution in Jeju and Chuja Islands. Korean J. Environ. Biol., 30: 339-348. https://doi.org/10.11626/KJEB.2012.30.4.339
  23. Park, J.I., K.S. Lee and M.H. Son, 2011. Growth dynamics of Zostera marina transplants in the Nakdong Estuary related to environmental changes. Kor. J. Fish. Aquat. Sci., 44: 553-542.
  24. Park, J.I., W.T. Li, J.B. Kim and K.S. Lee, 2009. Changes in productivity and morphological characteristics of Zostera marina transplants. J. Korean Soc. Oceanogr., 14: 41-47.
  25. Seddon, S. 2004. Going with the flow: Facilitating seagrass rehabilitation. Ecol. Manag. Res.. 5: 167-176. https://doi.org/10.1111/j.1442-8903.2004.00205.x
  26. Short, F.T. and S. Wyllie-Echeverria, 1996. National and human-induced disturbance of seagrasses. Environ. Conservation, 23: 17-27. https://doi.org/10.1017/S0376892900038212
  27. Short, F.T., R.C. Davis, B.S. Kopp, C.A. Short and D.M. Burdick, 2002. Site-selection model for optimal transplantation of eelgrass Zostera marina in the northeastern US. Mar. Ecol. Prog. Ser., 227: 253-267. https://doi.org/10.3354/meps227253
  28. Short, F.T., T. Carruthers, W. Dennison and M. Waycott, 2007. Global seagrass distribution and diversity: a bioregional model. J. Exp. Mar. Biol. Ecol., 350: 3-20. https://doi.org/10.1016/j.jembe.2007.06.012
  29. Song, Y.C., S.R. Kim, S.J. Park, G.M. Kang and S.S. Oh, 2016. A study of the causes of Ulva pertusa Kiellman large breeding in Bangdu Bay of Jeju Isalnd. Rep. J.I.H.E, 27: 57-69.
  30. Sugimoto, K., K. Hiraoka, S. Ohta, Y. Niimura, T. Terawaki and M. Okada, 2007. Effects of ulvoid (Ulva spp.) accumulation on the structure and function of eelgrass (Zostera marina L.) bed. Mar. Pollut. Bul., 54: 1582-1585. https://doi.org/10.1016/j.marpolbul.2007.06.008
  31. Thomas, F.I.M. and C.D. Cornelisen, 2003. Ammonium uptake by seagrass communities: effects of oscillatory versus unidirectional flow. Mar. Ecol. Prog. Ser., 247: 51-57. https://doi.org/10.3354/meps247051
  32. Zimmerman, R.C., J.L. Reguzzoni and R.S. Alberte, 1995. Eelgrass (Zostera marina L.) transplants in San Francisco Bay: Role of light availability on metabolism, growth and survival. Aquat. Bot., 51: 67-86. https://doi.org/10.1016/0304-3770(95)00472-C