DOI QR코드

DOI QR Code

Liposome Formation and Active Ingredient Capsulation on the Supercritical Condition

초임계 상태에서 리포좀의 생성 및 약물봉입

  • Mun, Yong-Jun (Biobeautech Co., Ltd, Department of Research & Development Center of Biobeautech Co., Ltd) ;
  • Cha, Joo-Hwan (KIST, Center of Special Analysis of Korea Science & Technology Institute) ;
  • Kim, In-Young (Biobeautech Co., Ltd, Department of Research & Development Center of Biobeautech Co., Ltd)
  • Received : 2021.11.30
  • Accepted : 2021.12.29
  • Published : 2021.12.30

Abstract

This study is to produce multiple layers of liposomes in a supercritical state and encapsulates active ingredients in order to stably encapsulate thermodynamically unstable active ingredients. In order to form a liposome in a supercritical state, a mixed surfactant development including vegetable-derived hydrogenated phosphatidyl choline and their delivative, hydrogenated sucrose distearate was synthesized as high purity. It describes a manufacturing method of injecting liquid carbon dioxide into a reactor to create a supercritical state and stirring to produce a giant liposome, and adding and loading genistein and quercetin. The HLB of the mixed lipid complex (SC-Lipid Complex) was 12.50, and multiple layers of liposome vesicles were formed even at very low concentrations. This surfactant had a specific odor with a pale yellow flake, the specific gravity was 0.972, and the acid value was 0.12, indicating that it was synthesized with high purity. As a result of the emulsifying capacity experiment using 20 wt% capric/capric triglyceride and triethylhexanoin using SC-Lipid Complex, it was found to have 96.2% emulsifying power. SC LIPOSOME GENISTEIN was confirmed that a multi-layer liposome vesicle was formed through a transmission electron microscope (Cryo-TEM) for the supercritical liposome encapsulated with genistein. The primary liposome particle size in which genistein was encapsulated was 253.9 nm, and the secondary capsule size was 18.2 ㎛. Using genistein as the standard substance, the encapsulation efficiency of supercritical liposomes was 99.5%, and general liposomes were found to have an efficiency of 93.6%. In addition, the antioxidant activity experiment in which quercetin was sealed was confirmed by the DPPH method, and it was found that the supercritical liposome significantly maintained excellent antioxidant activity. In this study, thermodynamically unstable raw materials were sealed into liposomes without organic solvents in a supercritical state. Based on these results, it is expected that it can be applied to various forms such as highly functional skincare cosmetics, makeup cosmetics, and scalp protection cosmetics.

이 연구는 열역학적으로 불안정한 활성성분을 안정하게 봉입하기위해 초임계 상태에서 다중층의 리포좀을 생성하고 유효성분을 봉입하는 것에 관한 것이다. 초임계 상태에서 원활하게 리포좀을 형성시키기 위하여 식물성유래의 하이드로제네이티드 포스파티딜콜린과 그 유도체, 하이드로제네이티드 수크로오스다이스테아레이트를 포함하는 혼합 계면활성제를 고순도로 합성하였다. 이것을 반응조에 이산화탄소를 주입하여 초임계상태를 만들고 교반함으로써 거대 리포좀을 생성시키고, 여기에 제니스테인(genistein)과 쿼세틴(quercetin)을 첨가하여 봉입하는 제조방법에 대하여 기술하였다. 혼합지질계면활성제(SC-Lipid Complex)의 HLB는 12.50이었으며, 아주 낮은 농도에서도 다중층의 리포좀 소포체가 형성되었다. 이 계면활성제의 외관은 엷은 황색의 페이스트로 특이취가 있었으며, 비중은 0.972이었고, 산가는 0.12로 고순도로 합성이 되었음을 알 수 있었다. SC-Lipid Complex를 사용하여 20 wt%의 카플릭/카프릭 트리글리세라이드와 트리에칠헥사노인을 사용한 유화력 실험결과 96.2 %의 유화력을 가지고 있음을 알 수 있었다. 제니스테인을 봉입한 초임계 리포좀에 대하여 투과전자현미경(Cryo-TEM)을 통해 다중층의 리포좀 소포체가 형성되었다는 것을 확인하였다. 제니스테인이 봉입된 1차 리포좀화한 입자 크기는 253.9 nm이었고, 2차 캡슐의 크기는 18.2 ㎛ 이었다. 제니스테인을 표준물질로 하여 초임계 상태 리포좀의 봉입효율은 99.5 %이었고, 일반적인 리포좀은 93.6 %의 효율을 가지는 것으로 나타났다. 또한 쿼세틴을 봉입한 항산화력 실험은 DPPH법으로 확인한 결과 초임계리포좀에서 유의성 있게 우수한 항산화력을 유지하고 있음을 알 수 있었다. 이러한 결과를 바탕으로 효과는 우수하나 열역학적으로 불안정한 원료를 유기용매를 사용하지 않고 초임계 상태에서 리포좀에 봉입하고, 고기능성의 스킨케어 화장품, 메이크업 화장품, 두피보호용 화장품 등 다양한 제형에 응용이 가능할 것으로 기대한다.

Keywords

Acknowledgement

이 연구는 중소벤처기업부 공고제2020-354호, 중소기업기술혁신개발사업(시장대응형) 과제로써 일부 정부 자금 지원을 받아서 수행한 결과임을 밝힙니다. 정부과제번호 : S2962535

References

  1. J. Marcelino, J. L. F. C. Lima, S. Reis, and C. Matos, "Assessing the effects of surfactants on the physical properties of liposome membranes", Chem. Phys. Lipids, Vol. 14, No.2 pp.94-103, (2007).
  2. J. M. Yoo, S. Y. Kim, E. Cho, E. Cho, S. Choi, Y. Jeong, B. Ha, and H. J. Chae, "Stabilization of astaxanthin using nanoliposome", KSBB J., Vol. 25, No. 2 pp.130-136 (2010).
  3. E. J. An, C. K. Kang, J. W. Kim, and B. S. Jin, "Lipid-based vesicles as transdermal delivery system", KIC News, Vol 13, No 4 pp.24-34, (2010).
  4. S. J. Kim, Y. J. Ju, I. Y. Kim, "Skin improvement effects and development of liposome capsule technology using centella asiatica extract powder", Journal of the Korean Applied Science and Technology, Vol. 37, No.5 pp.1285-1297, (2020). https://doi.org/10.12925/JKOCS.2020.37.5.1285
  5. J.M.A Kemps, D.J.A Crommelin, "Hydrolyse van fosfolipiden in water ig milieu", Pharm. Weekbl., Vol.123, pp.355-363, (1988).
  6. J.M.A Kemps, D.J.A. Crommelin, "Peroxidatie van fosfolipiden", Pharm. Weekbl., Vol.123, pp.457-469, (1988).
  7. A. J. Baille, A. t. Florence, L. r. Hume, G. t. Murihead, A. Rogerson, "The preparation and properties of niosomes-non-ionic surfactant vesicles", Journal of Pharmacy and Pharmacology, Vol. 37, No.12 pp.863-868, (1985). https://doi.org/10.1111/j.2042-7158.1985.tb04990.x
  8. Handjani-Vila, R. M., et al. "Dispersions of lamellar phases of non-ionic lipids in cosmetic products." International Journal of Cosmetic Science, Vol. 1, No.5 pp.303-314, (1979). https://doi.org/10.1111/j.1467-2494.1979.tb00224.x
  9. Norlen, Lars. "Stratum corneum keratin structure, function and formation-a comprehensive review." International Jurnal of Cosmetic Science, Vol.28, No.6 pp.397-425, (2006). https://doi.org/10.1111/j.1467-2494.2006.00345.x
  10. Norlen, Lars. "Skin barrier formation: the membrane folding model." Journal of Investigative Dermatology, Vol.117, No.4 pp.823-829, (2001). https://doi.org/10.1046/j.0022-202x.2001.01445.x
  11. I. Y. Kim, H. S. Choi, S. R. Lee, S.H. Choi, "Self assembly and formation of bi-continuous Cubic liquid crystalline phase". Journal of the Korean Applied Science and Technology, Vol. 31, No. 3 pp.478-485, (2014).
  12. D. M. Anderson, H. Wennerstroem, "Self-diffusion in bicontinuous cubic phases, L3 phases, and microemulsions.", Journal of physical chemistry, Vol 94, No 24 pp.8683-8694, (1990). https://doi.org/10.1021/j100387a012
  13. A. Laouini, C. Jaafar-Maalej, I. Limayem-Blouza, S. Sfar, C. Charcosset, H. Fessi, "Preparation, characterization and applications of liposomes: state of the art", Journal of Colloid Science and Biotechnology, Vol.1 No. 2 pp.147-168, (2012). https://doi.org/10.1166/jcsb.2012.1020
  14. Y.S. Jeun, E.J. Yang, "Studies on the using liposome cosmetics formulation technology", J. of Make-up Design., Vol. 1, No. 2 pp.15-19, (2005).
  15. S.D Yoon, H.S. Byun, "Application of separation technology and supercritical fluids process", CLEAN TECHNOLOGY, Vol. 18, No. 2 pp.123-143, (2012). https://doi.org/10.7464/KSCT.2012.18.2.123
  16. Y.G. Kim, J.Y. Imm, I.H. Kim, S.J. Kim, "Functional and emulsifying properties of balloonflower seeds oilextracted by supercritical carbon dioxide", Journal of the Korean Applied Science and Technology, Vol. 36, No. 1 pp.226-236, (2019). https://doi.org/10.12925/JKOCS.2019.36.1.226
  17. M.J. Lee, N.H. Jeong, B.S. Jeang, "Preparation and properties of soybean lecithin liposome using supercritical reverse phase evaporation method", J. of the Korean Oil Chemists' Soc., Vol. 27, No. 4 pp.391-398, (2010).
  18. Blois MS. "Antioxidant determinations by the use of a stable free radical". Nature 181 pp.1199-1200, (1958). https://doi.org/10.1038/1811199a0
  19. R. Re, N. Pellegrini, A. Proteggente, A. pannala, M. Yang, C. Rice-Evans, "Antixoidant activity applying an improved ABTS radical cation decolorization assay", Free Radic Biol Med, Vol.26, No.9 pp.1231-1237, (1999). https://doi.org/10.1016/S0891-5849(98)00315-3
  20. A. D. Banghan, M. M. Standish and T.C. Watkins, "Diffusion of Univalent lons across the Lamella of Swollen Phospholipids", J. Mol. Biol., Vol 13, pp.238-252, (1965). https://doi.org/10.1016/s0022-2836(65)80093-6
  21. S. Batzry, E. D. Korn, "Single bioayer liposomes prepared without Sonication", Biochim. et Biophys. Acta, Vol.298, No.4 pp.1015-1019, (1973). https://doi.org/10.1016/0005-2736(73)90408-2
  22. D. Deamer, A. D. Bangham, "Large volume liposomes by an ethervaporization method", Biochim. et Biophys. Acta, Vol.443, No.3 pp.629-634, (1976). https://doi.org/10.1016/0005-2736(76)90483-1
  23. F. Szoka, D. Papahadjopoulos, "Procedure for preparation of liposomer with large internal agueous space and high capture by reverse-phase evaporetion", Proceedings of the National Academy of Sciences of the United States of Amercia, Vol.75, No.9 pp.4194-4198, (1978).
  24. I. Matsaridou, P. Barmpalexis, A. Salis, I. Nikolakakis, "The influence of surfactant HLB and oil/surfactant ratio on the formation and properties of self emulsifying pellets and microemulsion reconstitution", AAPS PharmSciTech, Vol.13, No.4 pp.1319-1330, (2012). https://doi.org/10.1208/s12249-012-9855-7
  25. H. J. Yang, S. N. Park, J. H. Kim, "The stability of emulsions formed by phase inversion with variation of HLB of surfactant", The Korea Society of Applied Science and Technology, Vol.26, No.2 pp.117-123, (2009).
  26. Y. H. Kim, "The effects of HLB value of the surfactants added in the silicon oil emulsion antifoamer on the antifoaming ability", The Korea Society of Applied Science and Technology, Vol.27, No.3 pp.223-232, (2010)
  27. J. M. Hyun, Y. J. Jo, Y. B. Kim, S. M. Park, K. S. Yoon, N. H. Lee, "Anti-inflammatory and anti-oxidative activities of flavonoids extracted from dendranthema indicum flowers in Jeju island", Journal of the Korean Applied Science and Technology, Vol. 36, No. 4 pp.1259-1267, (2019).