DOI QR코드

DOI QR Code

Thermal distribution change in polyvinyl alcohol gel caused by focused ultrasound

폴리비닐알코올 젤의 집속초음파에 의한 온도분포 변화

  • Received : 2020.08.20
  • Accepted : 2020.10.13
  • Published : 2020.11.30

Abstract

In order to obtain basic information for using polyvinyl alcohol (PVA) gel as a tissue mimicking phantom for temperature visualization, the temperature change characteristics due to the focused ultrasound were examined for different concentration of PVA. To obtain the basic acoustic characteristics, the speed of sound, the attenuation coefficient, and the density depending on the PVA concentration were measured, and the thermodynamic characteristics, such as thermal conductivity and heat capacity, were measured. The range of temperature rising in the vicinity of the focal point due to the focused ultrasound was observed using a thermochromic film that changes color at 30 degree or more, and the discolored area was obtained by image processing of the recorded image. As the concentration of PVA increases in the given range of 2 wt% ~ 16 wt%, the area that rises above 30 degree inside the gel increases linearly. It is confirmed that the discolored area increases as the power applied to the focused ultrasonic transducer increases. These results showed good agreement with the simulation results using the finite element method.

폴리비닐알코올(polyvinyl alcohol, PVA)젤을 온도가시화용 생체모의매질로 사용하기 위한 기초적인 정보를 얻기 위하여, PVA의 농도를 바꾸어가며 집속초음파에 의한 온도변화 특성을 조사하였다. 기본적인 음향 특성을 조사하기 위하여 PVA농도에 따른 음속, 감쇠계수, 밀도 등이 측정되었고 열역학적 특성인 열전도도, 열용량이 측정되었다. 30 ℃ 이상에서 변색되는 시온필름을 사용하여 집속초음파에 의해 상승되는 초점부근의 온도 변화의 범위를 관찰하였으며 기록된 이미지의 화상처리를 통하여 변색범위의 면적을 도출하였다. PVA의 농도가 2 wt%~16 wt%의 범위에서 증가할수록 젤 내부에서 30 ℃ 이상으로 상승하는 영역은 선형적으로 증가함을 보였고 집속초음파 트랜스 듀서에 인가하는 파워가 증가할수록 변색영역이 증가함을 확인하였다. 이들 결과는 유한요소법을 사용한 시뮬레이션 결과와도 좋은 일치를 보였다.

Keywords

References

  1. Q. Cheng, S. Wang, T. Rials, and S. Lee, "Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers," Cellulose, 14, 593-602 (2007). https://doi.org/10.1007/s10570-007-9141-0
  2. S. Gupta, A. Pramanik, A.Kailath, T. Mishra, A. Guha, S. Nayar, and A. Sinha, "Composition dependent structural modulations in transparent poly(vinyl alcohol) hydrogels," Colloids and Surfaces B: Biointerfaces 74, 186-190 (2009). https://doi.org/10.1016/j.colsurfb.2009.07.015
  3. B. Gajra, S. Pandya, G. Vidyasagar, H. Rabari, R. Dedania, and S. Rao, "Poly vinyl alcohol hydrogel and its pharmaceutical and biomedical applications: A review," Int. J. Pharm. Sci. Res. 4, 20-26 (2012).
  4. K. Funamoto, T. Hayase, Y. Saijo, and T. Yambe, "Numerical experiment of transient and steady characteristics of ultrasonic-measurement-integrated simulation in three-dimensional blood flow analysis," Ann. Biomed. Eng. 37, 34-49 (2009). https://doi.org/10.1007/s10439-008-9600-2
  5. K. Funamoto, T. Hayase, Y. Saijo, and T. Yambe, "Numerical analysis of effects of measurement errors on ultrasonici-measurement-integrated simulation," IEEE Trans. Biomed. Eng. 58, 653-663 (2011). https://doi.org/10.1109/TBME.2010.2095418
  6. O. Yamashita, K. Funamoto, and T. Hayase, "Development of poly (vinyl alcohol) gel with in vivo acoustic properties," Proc. of the 21st Bioengineering Conference 2009 meeting, 451-452 (2009).
  7. K. Hayakawa. S. Takeda, K. Kawabe, and T. Shimura, "Acoustic characteristics of pva gel," IEEE Int. Ultrason. Symp. 969-972 (1989).
  8. B. Gajra, S. Pandya, G. Vidyasagar, H. Rabari, R. Dedania, and S. Rao, "Polyvinyl alcohol hydrogel and its pharmaceutical and biomedical applications: A review," Int. J. Pharm. Sci. Res. 4, 20-26 (2012).
  9. M. Choi, S. Guntur, K. Lee, D. Paeng, and A. Coleman, "A tissue mimicking polyacrylamide hydrogel phantom for visualizing thermal lesions generated by high intensity focused ultrasound," Ultrasound Med. Biol. 39, 439-448 (2013). https://doi.org/10.1016/j.ultrasmedbio.2012.10.002
  10. A. Maxwell, T. Wang, L. Yuan, A. Duryea, Z. Xu, and C. Cain, "A tissue phantom for visualization and measurement of ultrasound-induced cavitation damage," Ultrasound Med. Biol. 36, 2132-2143 (2010). https://doi.org/10.1016/j.ultrasmedbio.2010.08.023
  11. C. Lafon, V. Zderic, M. Noble, J. Yuen, P. Kaczkowski, O. Sapozhnikov, F. Chavrier, L. Crum, and S. Vaezy, "Gel phantom for use in high-intensity focused ultrasound dosimetry," Ultrasound Med. Biol. 31, 1383-1389 (2005). https://doi.org/10.1016/j.ultrasmedbio.2005.06.004
  12. J. Kim, M. Kim, Y. Park, and K. Ha, "Acoustic Characteristics of a tissue mimicking phantom for visualization of thermal distribution," Jpn. J. Appl. Phys. 51, 07GB10 (2012). https://doi.org/10.7567/JJAP.51.07GB10
  13. J. Kim, J. Jung, M. Kim, and K. Ha, "Experimental analysis of temperature elevation in ultrasonic beam from circular piston," Jpn. J. Appl. Phys. 53, 07KF14 (2014). https://doi.org/10.7567/JJAP.53.07KF14
  14. J. Kim, J. Jung, M. Kim, and K. Ha, "Visualization of temperature elevation due to focused ultrasound generated by tone bursts wave," Jpn. J. Appl. Phys. 53, 07KF16 (2014). https://doi.org/10.7567/JJAP.53.07KF16
  15. J. Kim, J. Jung, M. Kim, and K. Ha, "Estimation of thermal distribution in tissue mimicking phantom made of carrageenan gel," Jpn. J. Appl. Phys. 54, 07HF23 (2015). https://doi.org/10.7567/JJAP.54.07HF23
  16. J. Kim, J. Jung, M. Kim, E. Lee, and I. Lee, and K. Ha, "Distribution of temperature elevation caused by moving HIFU transducer," Jpn. J. Appl. Phys. 54, 07HF13 (2015). https://doi.org/10.7567/JJAP.54.07HF13
  17. J. Jung, J. Kim, K. Ha, M. Kim, and Y. Cao, "Tissue mimicking phantom for visualization of temperature elevation caused by ultrasound" (in Korean), J. Acoust. Soc. Kr. 33, 291-299 (2014). https://doi.org/10.7776/ASK.2014.33.5.291
  18. X. Fan and K. Hynynen, "The effect of wave reflection and refraction at soft tissue interfaces during ultrasound hyperthermia treatments," J. Acoust. Soc. Am. 91, 1727-1736 (1992). https://doi.org/10.1121/1.402452
  19. R. Martinez, A. Vera, and L. Leija, "HIFU induced heating modelling by using the finite element method," Phys. Procedia, 63, 127-133 (2015). https://doi.org/10.1016/j.phpro.2015.03.021
  20. S. Tanaka, K. Shimizu, S. Sakuma, T. Tsuchiya, and N. Endoh, "Experimental and numerical analysis of temperature rise in phantom caused by high-intensity focused ultrasonic irradiation," Jpn. J. Appl. Phys. 52, 07HF09 (2013). https://doi.org/10.7567/JJAP.52.07HF09
  21. W. Nyborg, "Solutions of the bio-heat transfer equation," Phys. Med. Bioi. 33, 785-792 (1988). https://doi.org/10.1088/0031-9155/33/7/002
  22. U. Kaatze, K. Lautscham, and M. Brai, "Acoustical absorption spectroscopy of liquids between 0.15 and 3000 MHz: II. ultrasonic pulse transmission methods," J. Phys. E: Sci. Instrum. 21, 98-103 (1988). https://doi.org/10.1088/0022-3735/21/1/018
  23. J. Kim, J. Kim, M. Kim, K. Ha, and A. Yamada, "Arrayed ultrasonic transducers on arc surface for plane wave synthesis," Jpn. J. Appl. Phys. 43, 3061-3062 (2004). https://doi.org/10.1143/JJAP.43.3061
  24. C. H. Sherman and J. L. Butler, Transducers and Arrays for Underwater Sound (Springer, New York, 2008), Chap. 12.