DOI QR코드

DOI QR Code

A study on threshold detection algorithm for adaptive transmission in underwater acoustic communication

수중 음향 통신에서 적응형 전송을 위한 임계값 검출 알고리즘

  • Received : 2020.09.23
  • Accepted : 2020.10.28
  • Published : 2020.11.30

Abstract

The adaptive transmission techniques are efficient method for underwater acoustic communication to improve the system efficiency by varying transmission parameters according to channel conditions. In this paper, we construct four transmission modes with different data rates using the convolutional codes, which is freely set to size of information bits. On the receiver side, one critical component of adaptive system is to find which mode has best performance. In this paper, we proposed threshold detection algorithm to decide appropriate mode and applied turbo equalization method based on BCJR decoder in order to improve performance. We analyzed the performance of four modes based on threshold detection algorithm through the lake experiment.

적응형 전송 기법은 수중 음향 채널의 상태에 따라 전송 파라미터를 변경하여 전송 및 성능을 향상 시키는 효율적인 방법이다. 본 논문에서는 적응형 전송 기법에서 전송 모드를 결정하기 위한 네 가지 모드와 이의 모드를 검출하기 위한 세 가지 임계값 검출 알고리즘을 제안한다. 송신기에서 정보비트의 크기를 자유롭게 설정하기 위하여 컴볼루션 부호를 사용하였으며, 수신기에서는 성능을 향상시키기 위하여 BCJR 복호 기반 터보등화기법을 적용하였다. 또한 수중 실험을 통해 각 모드에서 성능을 만족하는 임계값 간의 관계를 분석하였다.

Keywords

References

  1. M. Stojanovic and P. -P. Beaujean, "Acoustic Communication," in Handbook of Ocean Engineering, edited by M. R. Dhanak and N. I. Xiros (Springer International Publishing, Switzerland, 2016).
  2. A. J. Viterbi, "Convolutional codes and their performance in communication systems," IEEE Trans. Comm. Tech. 19, 751-772 (1971). https://doi.org/10.1109/TCOM.1971.1090700
  3. R. Diamant and L. Lampe, "Adaptive error-correction coding scheme for underwater acoustic communication networks," IEEE J. Oceanic Engineering, 40, 104-114 (2015). https://doi.org/10.1109/JOE.2013.2291635
  4. B. Tomasi, L. Toni, L. Rossi, and M. zorzi, "Performance study of variable-rate modulation for underwater communications based on experimental data," Proc. MTS/IEEE OCEANS Conf. Seattle, 978-985 (2010).
  5. L. Wan, H. Zhou, X. Xu, Y. Huang, S. Zhou, Z. Shi, and J.-H. Cui, "Adaptive modulation and coding for underwater acoustic OFDM," IEEE J. Ocean Engineering, 40, 327-336 (2014). https://doi.org/10.1109/JOE.2014.2323365
  6. P. A. van Walree and G. Leus, "Robust underwater telemetry with adaptive turbo multiband equalization," IEEE J. Ocean Engineering, 34, 644-655 (2009).
  7. O. A. Alim, M. A. Mokhtar, and G. Atia, "Adaptive modulation assisted with long range channel prediction for wideband fading channels," Proc. the Twenty-First National Radio Science Conf. C29-1-8 (2004).
  8. Z. Ye and A. Song, "Adaptive Modulation for Underwater Acoustic based on Time-Reversed OFDM," Proc. MTS/IEEE OCEANS Conf. 6844-6857 (2017).
  9. L. Freitag, M. Grund, S. Singh, J. Partan, P. Koski, and K. Ball, "The WHOI micro-modem : An acoustic communications and navigation system for multiple platforms," Proc. MTS/IEEE OCEANS 2005, 1086-1092 (2005).
  10. E. Gallimore, J. Partan, I. Vaughn, S. Singh, J. Shusta, and L. Freitag, "The WHOI micromodem-2 : A scalable system for acoustic communications and networking," Proc. IEEE/MTS Oceans Conf. Seattle, 1-7 (2010).
  11. A. J. Viterbi, "Convolutional codes and their performance in communication systems," IEEE Trans. Comm. Tech. 19, 751-772 (1971). https://doi.org/10.1109/TCOM.1971.1090700
  12. L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, "Optimal decoding of linear codes for minimizing symbol error rate," IEEE Trans. on Information Theory, 20, 284-287 (1974).
  13. C. U. Baek and J. W. Jung. "High throughput receiver structure for underwater communication," Int. J. Distrib. Sens. Netw. 11 (2015).