DOI QR코드

DOI QR Code

Deep neural network based prediction of burst parameters for Zircaloy-4 fuel cladding during loss-of-coolant accident

  • Received : 2019.12.21
  • Accepted : 2020.04.24
  • Published : 2020.11.25

Abstract

Background: Understanding the behaviour of nuclear fuel claddings by conducting burst test on single cladding tube under simulated loss-of-coolant accident conditions and developing theoretical cum empirical predictive computer codes have been the focus of several investigations. The developed burst criterion (a) assumes symmetrical deformation of cladding tube in contrast to experimental observation (b) interpolates the properties of Zircaloy-4 cladding in mixed α+β phase (c) does not account for azimuthal temperature variations. In order to overcome all these drawbacks of burst criterion, it is reasoned that artificial intelligence technique may be a better option to predict the burst parameters. Methods: Artificial neural network models based on feedforward backpropagation algorithm with logsig transfer function are developed. Results: Neural network architecture of 2-4-4-3, that is model with two hidden layers having four nodes in each layer is found to be the most suitable. The mean, maximum, and minimum prediction errors for this optimised model are 0.82%, 19.62%, and 0.004%, respectively. Conclusion: The burst stress, burst temperature, and burst strain obtained from burst criterion have average deviation of 19%, 12%, and 53% respectively whereas the developed neural network model predicted these parameters with average deviation of 6%, 2%, and 8%, respectively.

Keywords

References

  1. S. Suman, M.K. Khan, M. Pathak, R.N. Singh, Investigation of elevated-temperature mechanical properties of d-hydride precipitate in Zircaloy-4 fuel cladding tubes using nanoindentation, J. Alloys Compd. 726 (2017) 107-113, https://doi.org/10.1016/J.JALLCOM.2017.07.321.
  2. S. Suman, M.K. Khan, M. Pathak, R.N. Singh, 3D simulation of hydride-assisted crack propagation in zircaloy-4 using XFEM, Int. J. Hydrogen Energy 42 (2017) 18668-18673, https://doi.org/10.1016/J.IJHYDENE.2017.04.163.
  3. S. Suman, M.K. Khan, M. Pathak, R.N. Singh, Effects of hydride on crack propagation in zircaloy-4, Procedia Eng 173 (2017) 1185-1190, https://doi.org/10.1016/j.proeng.2016.12.105.
  4. S. Suman, Influence of hydrogen concentration on burst parameters of Zircaloy-4 cladding tube under simulated loss-of-coolant accident, Nucl. Eng. Technol. (2020), https://doi.org/10.1016/j.net.2020.02.009.
  5. H.M. Chung, T.F. Kassner, DEFORMATION CHARACTERISTICS OF ZIRCALOY CLADDING IN VACUUM AND STEAM UNDER TRANSIENT-HEATING CONDITIONS: SUMMARY REPORT, 1978 accessed, https://inis.iaea.org/search/search.aspx?orig_q=RN:10466662. (Accessed 22 September 2019).
  6. R.H. Chapman, J.L. Crowley, A.W. Longest, G. Hofmann, Zirconium cladding deformation in a steam environment with transient heating, ASTM Spec. Tech. Publ., 1979, pp. 393-408.
  7. E.H. Karb, L. Sepold, P. Hofmann, C. Petersen, G. Schanz, H. Zimmermann, Lwr fuel rod behavior during reactor tests under loss-of-coolant conditions: results of the FR2 in-pile tests, J. Nucl. Mater. 107 (1982) 55-77, https://doi.org/10.1016/0022-3115(82)90558-X.
  8. F.J. Erbacher, H.J. Neitzel, H. Rosinger, H. Schmidt, K. Wiehr, Burst criterion OF zircaloy fuel claddings IN a loss-of-coolant accident. ASTM Spec. Tech. Publ., ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, 1982, pp. 271-283, https://doi.org/10.1520/stp37058s, 19428-2959.
  9. T.K. Sawarn, S. Banerjee, S.S. Sheelvantra, J.L. Singh, V. Bhasin, Study of clad ballooning and rupture behaviour of Indian PHWR fuel pins under transient heating condition in steam environment, J. Nucl. Mater. 495 (2017) 332-342, https://doi.org/10.1016/J.JNUCMAT.2017.08.008.
  10. T. Manngard, A.R. Massih, Modelling and simulation of reactor fuel cladding under loss-of-coolant accident conditions, J. Nucl. Sci. Technol. 48 (2011) 39-49, https://doi.org/10.1080/18811248.2011.9711677.
  11. S. Suman, M.K. Khan, M. Pathak, R.N. Singh, J.K. Chakravartty, Rupture behaviour of nuclear fuel cladding during loss-of-coolant accident, Nucl. Eng. Des. 307 (2016) 319-327, https://doi.org/10.1016/J.NUCENGDES.2016.07.022.
  12. S. Suman, Burst criterion for Indian PHWR fuel cladding under simulated loss-of-coolant accident, Nucl. Eng. Technol. (2019), https://doi.org/10.1016/j.net.2019.04.004.
  13. H.E. Rosinger, A model to predict the failure of zircaloy-4 fuel sheathing during postulated loca conditions, J. Nucl. Mater. 120 (1984) 41-54, https://doi.org/10.1016/0022-3115(84)90169-7.
  14. S. Suman, M.K. Khan, M. Pathak, R.N. Singh, Effects of hydrogen on thermal creep behaviour of Zircaloy fuel cladding, J. Nucl. Mater. 498 (2018) 20-32, https://doi.org/10.1016/J.JNUCMAT.2017.10.015.
  15. M. Gomez Fernandez, A. Tokuhiro, K. Welter, Q. Wu, Nuclear energy system's behavior and decision making using machine learning, Nucl. Eng. Des. 324 (2017) 27-34, https://doi.org/10.1016/J.NUCENGDES.2017.08.020.
  16. A.R. Massih, L.O. Jernkvist, Assessment of data and criteria for cladding burst in loss-of-coolant accidents, Quantum Technologies, SSM 46 (2015), 2015.
  17. A. Sarkar, S.K. Sinha, J.K. Chakravartty, R.K. Sinha, Artificial Neural Network modelling of in-reactor diametral creep of Zr2.5%Nb pressure tubes at Indian PHWRs, Ann. Nucl. Energy 69 (2014) 246-251, https://doi.org/10.1016/j.anucene.2014.01.043.
  18. M. Jin, P. Cao, M.P. Short, Predicting the onset of void swelling in irradiated metals with machine learning, J. Nucl. Mater. 523 (2019) 189-197, https://doi.org/10.1016/j.jnucmat.2019.05.054.
  19. G.A. Cottrell, R. Kemp, H.K.D.H. Bhadeshia, G.R. Odette, T. Yamamoto, Neural network analysis of Charpy transition temperature of irradiated low-activation martensitic steels, J. Nucl. Mater. 367-370 (2007) 603-609, https://doi.org/10.1016/j.jnucmat.2007.03.103.
  20. W. Grzesik, S. Brol, Hybrid approach to surface roughness evaluation in multistage machining processes, J. Mater. Process. Technol. 134 (2003) 265-272, https://doi.org/10.1016/S0924-0136(02)01105-6.
  21. G. Zhang, B. Eddy Patuwo, M.Y. Hu, Forecasting with artificial neural networks:: the state of the art, Int. J. Forecast. 14 (1998) 35-62, https://doi.org/10.1016/S0169-2070(97)00044-7.
  22. A.M. Zain, H. Haron, S. Sharif, Prediction of surface roughness in the end milling machining using Artificial Neural Network, Expert Syst. Appl. 37 (2010) 1755-1768, https://doi.org/10.1016/J.ESWA.2009.07.033.
  23. U. Zuperl, F. Cus, Optimization of cutting conditions during cutting by using neural networks, Robot. Comput. Integrated Manuf. 19 (2003) 189-199, https://doi.org/10.1016/S0736-5845(02)00079-0.
  24. F. Cus, U. Zuperl, Approach to optimization of cutting conditions by using artificial neural networks, J. Mater. Process. Technol. 173 (2006) 281-290, https://doi.org/10.1016/J.JMATPROTEC.2005.04.123.
  25. A. Kohli, U.S. Dixit, A neural-network-based methodology for the prediction of surface roughness in a turning process, Int. J. Adv. Manuf. Technol. 25 (2005) 118-129, https://doi.org/10.1007/s00170-003-1810-z.
  26. A.M.A. Al-Ahmari, Predictive machinability models for a selected hard material in turning operations, J. Mater. Process. Technol. 190 (2007) 305-311, https://doi.org/10.1016/J.JMATPROTEC.2007.02.031.
  27. J.P. Davim, V.N. Gaitonde, S.R. Karnik, Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models, J. Mater. Process. Technol. 205 (2008) 16-23, https://doi.org/10.1016/J.JMATPROTEC.2007.11.082.
  28. M. Nalbant, H. Gokkaya, I. Toktas, G. Sur, The experimental investigation of the effects of uncoated, PVD- and CVD-coated cemented carbide inserts and cutting parameters on surface roughness in CNC turning and its prediction using artificial neural networks, Robot. Comput. Integrated Manuf. 25 (2009) 211-223, https://doi.org/10.1016/J.RCIM.2007.11.004.
  29. S. Suman, Understanding the role of hydrogen on creep behaviour of Zircaloy-4 cladding tubes using nanoindentation, Nucl. Eng. Technol. (2020) 8-13, https://doi.org/10.1016/j.net.2020.02.008.
  30. G. Pi-neiro, S. Perelman, J.P. Guerschman, J.M. Paruelo, How to evaluate models: observed vs. predicted or predicted vs. observed? Ecol. Model. 216 (2008) 316-322, https://doi.org/10.1016/J.ECOLMODEL.2008.05.006.
  31. M.K. Khan, M. Pathak, S. Suman, A. Deo, R. Singh, Burst investigation on zircaloy-4 claddings in inert environment, Ann. Nucl. Energy 69 (2014) 292-300, https://doi.org/10.1016/J.ANUCENE.2014.02.017.

Cited by

  1. Artificial intelligence in nuclear industry: Chimera or solution? vol.278, 2020, https://doi.org/10.1016/j.jclepro.2020.124022
  2. Impact of hydrogen on rupture behaviour of Zircaloy-4 nuclear fuel cladding during loss-of-coolant accident: a novel observation of failure at multiple locations vol.53, pp.2, 2020, https://doi.org/10.1016/j.net.2020.07.017
  3. Zy-4 LOCA cladding burst criteria computed by neural networks vol.385, 2021, https://doi.org/10.1016/j.nucengdes.2021.111538