References
- S. Suman, M.K. Khan, M. Pathak, R.N. Singh, Investigation of elevated-temperature mechanical properties of d-hydride precipitate in Zircaloy-4 fuel cladding tubes using nanoindentation, J. Alloys Compd. 726 (2017) 107-113, https://doi.org/10.1016/J.JALLCOM.2017.07.321.
- S. Suman, M.K. Khan, M. Pathak, R.N. Singh, 3D simulation of hydride-assisted crack propagation in zircaloy-4 using XFEM, Int. J. Hydrogen Energy 42 (2017) 18668-18673, https://doi.org/10.1016/J.IJHYDENE.2017.04.163.
- S. Suman, M.K. Khan, M. Pathak, R.N. Singh, Effects of hydride on crack propagation in zircaloy-4, Procedia Eng 173 (2017) 1185-1190, https://doi.org/10.1016/j.proeng.2016.12.105.
- S. Suman, Influence of hydrogen concentration on burst parameters of Zircaloy-4 cladding tube under simulated loss-of-coolant accident, Nucl. Eng. Technol. (2020), https://doi.org/10.1016/j.net.2020.02.009.
- H.M. Chung, T.F. Kassner, DEFORMATION CHARACTERISTICS OF ZIRCALOY CLADDING IN VACUUM AND STEAM UNDER TRANSIENT-HEATING CONDITIONS: SUMMARY REPORT, 1978 accessed, https://inis.iaea.org/search/search.aspx?orig_q=RN:10466662. (Accessed 22 September 2019).
- R.H. Chapman, J.L. Crowley, A.W. Longest, G. Hofmann, Zirconium cladding deformation in a steam environment with transient heating, ASTM Spec. Tech. Publ., 1979, pp. 393-408.
- E.H. Karb, L. Sepold, P. Hofmann, C. Petersen, G. Schanz, H. Zimmermann, Lwr fuel rod behavior during reactor tests under loss-of-coolant conditions: results of the FR2 in-pile tests, J. Nucl. Mater. 107 (1982) 55-77, https://doi.org/10.1016/0022-3115(82)90558-X.
- F.J. Erbacher, H.J. Neitzel, H. Rosinger, H. Schmidt, K. Wiehr, Burst criterion OF zircaloy fuel claddings IN a loss-of-coolant accident. ASTM Spec. Tech. Publ., ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, 1982, pp. 271-283, https://doi.org/10.1520/stp37058s, 19428-2959.
- T.K. Sawarn, S. Banerjee, S.S. Sheelvantra, J.L. Singh, V. Bhasin, Study of clad ballooning and rupture behaviour of Indian PHWR fuel pins under transient heating condition in steam environment, J. Nucl. Mater. 495 (2017) 332-342, https://doi.org/10.1016/J.JNUCMAT.2017.08.008.
- T. Manngard, A.R. Massih, Modelling and simulation of reactor fuel cladding under loss-of-coolant accident conditions, J. Nucl. Sci. Technol. 48 (2011) 39-49, https://doi.org/10.1080/18811248.2011.9711677.
- S. Suman, M.K. Khan, M. Pathak, R.N. Singh, J.K. Chakravartty, Rupture behaviour of nuclear fuel cladding during loss-of-coolant accident, Nucl. Eng. Des. 307 (2016) 319-327, https://doi.org/10.1016/J.NUCENGDES.2016.07.022.
- S. Suman, Burst criterion for Indian PHWR fuel cladding under simulated loss-of-coolant accident, Nucl. Eng. Technol. (2019), https://doi.org/10.1016/j.net.2019.04.004.
- H.E. Rosinger, A model to predict the failure of zircaloy-4 fuel sheathing during postulated loca conditions, J. Nucl. Mater. 120 (1984) 41-54, https://doi.org/10.1016/0022-3115(84)90169-7.
- S. Suman, M.K. Khan, M. Pathak, R.N. Singh, Effects of hydrogen on thermal creep behaviour of Zircaloy fuel cladding, J. Nucl. Mater. 498 (2018) 20-32, https://doi.org/10.1016/J.JNUCMAT.2017.10.015.
- M. Gomez Fernandez, A. Tokuhiro, K. Welter, Q. Wu, Nuclear energy system's behavior and decision making using machine learning, Nucl. Eng. Des. 324 (2017) 27-34, https://doi.org/10.1016/J.NUCENGDES.2017.08.020.
- A.R. Massih, L.O. Jernkvist, Assessment of data and criteria for cladding burst in loss-of-coolant accidents, Quantum Technologies, SSM 46 (2015), 2015.
- A. Sarkar, S.K. Sinha, J.K. Chakravartty, R.K. Sinha, Artificial Neural Network modelling of in-reactor diametral creep of Zr2.5%Nb pressure tubes at Indian PHWRs, Ann. Nucl. Energy 69 (2014) 246-251, https://doi.org/10.1016/j.anucene.2014.01.043.
- M. Jin, P. Cao, M.P. Short, Predicting the onset of void swelling in irradiated metals with machine learning, J. Nucl. Mater. 523 (2019) 189-197, https://doi.org/10.1016/j.jnucmat.2019.05.054.
- G.A. Cottrell, R. Kemp, H.K.D.H. Bhadeshia, G.R. Odette, T. Yamamoto, Neural network analysis of Charpy transition temperature of irradiated low-activation martensitic steels, J. Nucl. Mater. 367-370 (2007) 603-609, https://doi.org/10.1016/j.jnucmat.2007.03.103.
- W. Grzesik, S. Brol, Hybrid approach to surface roughness evaluation in multistage machining processes, J. Mater. Process. Technol. 134 (2003) 265-272, https://doi.org/10.1016/S0924-0136(02)01105-6.
- G. Zhang, B. Eddy Patuwo, M.Y. Hu, Forecasting with artificial neural networks:: the state of the art, Int. J. Forecast. 14 (1998) 35-62, https://doi.org/10.1016/S0169-2070(97)00044-7.
- A.M. Zain, H. Haron, S. Sharif, Prediction of surface roughness in the end milling machining using Artificial Neural Network, Expert Syst. Appl. 37 (2010) 1755-1768, https://doi.org/10.1016/J.ESWA.2009.07.033.
- U. Zuperl, F. Cus, Optimization of cutting conditions during cutting by using neural networks, Robot. Comput. Integrated Manuf. 19 (2003) 189-199, https://doi.org/10.1016/S0736-5845(02)00079-0.
- F. Cus, U. Zuperl, Approach to optimization of cutting conditions by using artificial neural networks, J. Mater. Process. Technol. 173 (2006) 281-290, https://doi.org/10.1016/J.JMATPROTEC.2005.04.123.
- A. Kohli, U.S. Dixit, A neural-network-based methodology for the prediction of surface roughness in a turning process, Int. J. Adv. Manuf. Technol. 25 (2005) 118-129, https://doi.org/10.1007/s00170-003-1810-z.
- A.M.A. Al-Ahmari, Predictive machinability models for a selected hard material in turning operations, J. Mater. Process. Technol. 190 (2007) 305-311, https://doi.org/10.1016/J.JMATPROTEC.2007.02.031.
- J.P. Davim, V.N. Gaitonde, S.R. Karnik, Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models, J. Mater. Process. Technol. 205 (2008) 16-23, https://doi.org/10.1016/J.JMATPROTEC.2007.11.082.
- M. Nalbant, H. Gokkaya, I. Toktas, G. Sur, The experimental investigation of the effects of uncoated, PVD- and CVD-coated cemented carbide inserts and cutting parameters on surface roughness in CNC turning and its prediction using artificial neural networks, Robot. Comput. Integrated Manuf. 25 (2009) 211-223, https://doi.org/10.1016/J.RCIM.2007.11.004.
- S. Suman, Understanding the role of hydrogen on creep behaviour of Zircaloy-4 cladding tubes using nanoindentation, Nucl. Eng. Technol. (2020) 8-13, https://doi.org/10.1016/j.net.2020.02.008.
- G. Pi-neiro, S. Perelman, J.P. Guerschman, J.M. Paruelo, How to evaluate models: observed vs. predicted or predicted vs. observed? Ecol. Model. 216 (2008) 316-322, https://doi.org/10.1016/J.ECOLMODEL.2008.05.006.
- M.K. Khan, M. Pathak, S. Suman, A. Deo, R. Singh, Burst investigation on zircaloy-4 claddings in inert environment, Ann. Nucl. Energy 69 (2014) 292-300, https://doi.org/10.1016/J.ANUCENE.2014.02.017.
Cited by
- Artificial intelligence in nuclear industry: Chimera or solution? vol.278, 2020, https://doi.org/10.1016/j.jclepro.2020.124022
- Impact of hydrogen on rupture behaviour of Zircaloy-4 nuclear fuel cladding during loss-of-coolant accident: a novel observation of failure at multiple locations vol.53, pp.2, 2020, https://doi.org/10.1016/j.net.2020.07.017
- Zy-4 LOCA cladding burst criteria computed by neural networks vol.385, 2021, https://doi.org/10.1016/j.nucengdes.2021.111538