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a b s t r a c t

Background: Understanding the behaviour of nuclear fuel claddings by conducting burst test on single
cladding tube under simulated loss-of-coolant accident conditions and developing theoretical cum
empirical predictive computer codes have been the focus of several investigations. The developed burst
criterion (a) assumes symmetrical deformation of cladding tube in contrast to experimental observation
(b) interpolates the properties of Zircaloy-4 cladding in mixed aþ b phase (c) does not account for
azimuthal temperature variations. In order to overcome all these drawbacks of burst criterion, it is
reasoned that artificial intelligence technique may be a better option to predict the burst parameters.
Methods: Artificial neural network models based on feedforward backpropagation algorithm with logsig
transfer function are developed.
Results: Neural network architecture of 2-4-4-3, that is model with two hidden layers having four nodes
in each layer is found to be the most suitable. The mean, maximum, and minimum prediction errors for
this optimised model are 0.82%, 19.62%, and 0.004%, respectively.
Conclusion: The burst stress, burst temperature, and burst strain obtained from burst criterion have
average deviation of 19%, 12%, and 53% respectively whereas the developed neural network model
predicted these parameters with average deviation of 6%, 2%, and 8%, respectively.
© 2020 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nuclear fuel cladding is a thin-wall tube that encapsulates pel-
lets of uranium oxide fuel undergoing fission to generate heat
[1e3]. The produced heat energy is carried away by pressurised
coolant circulating outside of the fuel cladding in light water re-
actors. In a loss-of-coolant accident (LOCA), there is a decrease in
the system pressure outside of the cladding and the heat transfer
from the fuel. As the outside coolant pressure drops, internal
pressure of cladding becomes higher than the surrounding pres-
sure giving rise to hoop stress while decrease in the heat transfer
rate causes a rapid increase in the temperature of the cladding. As a
result, the creep deformation or ballooning of the fuel cladding
occurs which may eventually cause its bursting. Moreover,
ballooning of the fuel cladding may result in a blockage of the
coolant sub-channel that in turn may impair the fuel coolability [4].

Understanding the behaviour of nuclear fuel claddings by con-
ducting burst test on single cladding tube under LOCA simulated
by Elsevier Korea LLC. This is an
conditions [5e9] and developing theoretical cum empirical pre-
dictive computer codes [10e12] have been the focus of several in-
vestigations. Chapman et al. [6] tested Zircaloy-4 cladding having
an internal heater to simulate fuel pellet in superheated steam
environment. They observed that deformation of Zircaloy-4 clad-
ding is sensitive to even a small temperature difference, and the
local temperature variations is a decisive factor for burst parame-
ters. Chung and Kassner [5] performed an extensive burst investi-
gation on Zircaloy-4 cladding in both steam and vacuum
environment. It was seen that cladding tube bends during
ballooning but before burst, and this phenomenon is more pro-
nounced for burst tests in steam or for pre-oxidised specimens than
that in vacuum under otherwise identical conditions. Erbacher et al.
[8] conducted burst test on Zircaloy-4 cladding and found that the
burst stress depends mainly on the temperature and the oxygen
content. A stress based burst criterion, assuming symmetrical
deformation of cladding, was proposed based on empirical burst
correlation incorporating values of oxygen concentration and burst
stress. Sawarn et al. [9] did similar investigation on Zircaloy-4
cladding and proposed the empirical burst stress correlation with
different weightage to oxygen concentration. Manngård and
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Massih as well as Suman et al. [10,11] also developed burst criterion
to predict the burst parameters of Zircaloy-4 fuel cladding under
simulated LOCA conditions. Both studies used empirical burst stress
correlation developed by Erbacher et al. [8] and also assumed
symmetrical deformation of the cladding.

Even single tube burst experiments under simulated LOCA
conditions are very complex, tedious, and require dedicated infra-
structure. The developed burst criterion in open literature
[8,10,11,13] assumes symmetrical deformation of cladding tube
which is in contrast to experimental observation of bending of
cladding during ballooning of tube before burst [6]. It is worth
mentioning that Zircaloy-4 cladding tubes undergo phase trans-
formation from anisotropic a-phase to isotropic b-phase with
temperature rise during LOCA. This phase transformation is gradual
and there exists a mixed aþb-phase. Different significant thermo-
mechanical properties relevant to LOCA such as creep of cladding
are not yet well understood for this mixed aþb-phase [8]. Thus, the
burst criterion interpolates the properties of Zircaloy-4 cladding in
this mixed phase between a-phase and b-phase. Even some arbi-
trary conditions without any theoretical basis are imposed on strain
behaviour of cladding in this phase [8,10,11]. These burst criteria
also do not account for azimuthal temperature variations in clad-
ding in spite of the fact that the deformations, in turn burst pa-
rameters, are highly sensitive to local temperature of the cladding
[6]. Moreover, burst investigation on Zircaloy-4 cladding under
simulated LOCA conditions by different researchers [8,9], perhaps
owing to different manufacturing route of Zircaloy-4 cladding [14],
yielded different empirical parameters in burst correlations. In or-
der to overcome all these drawbacks of burst criterion, it is
reasoned that artificial intelligence technique may be a better op-
tion to predict the burst parameters of nuclear fuel cladding during
LOCA since such technique does not require theoretical under-
standing of all the occurring phenomena.

Artificial intelligence is science and engineering of making
intelligent machines, especially intelligent computer programs to
achieve any desired goal. The concept of intelligence refers to
certain ability to plan, reason and learn, sense and build certain
perception of knowledge. Artificial Neural Network (ANN) is an
artificial intelligence technique for building a computer program
that learns from data. ANN is the computational model inspired by
the animal brain [15]. The neural network model consists of layers,
namely input layer, hidden layer, and output layer, and each layer is
made up of neurons (also refereed as node). These collection of
neurons are created and connected together, allowing them to send
messages to each other. Neural network is trained using the avail-
able data in iterative manner, each time strengthening the con-
nections that lead to success and diminishing those that lead to
failure. In the present article, artificial neural network (ANN)
technique has been applied apparently for the first time to predict
the burst parameters of Zircaloy-4 nuclear fuel cladding during
LOCA. Different neural network architectures have been tested and
an optimised deep neural network model has been developed. The
performance of the optimised deep neural network has been
compared with the experimental results as well as with theoretical
cum empirical predictive computer codes usually termed as burst
criterion.

2. Data collection

Data collection is a very crucial step prior to development of
ANN model. The performance of ANN model is dependent on the
accuracy of data used to train such model. Data obtained from
single tube burst experiments on Zircaloy-4 fuel cladding under
simulated LOCA by Chung and Kassner [5], Chapman et al. [6], Karb
et al. [7], and Sawarn et al. [9] are used in the present study to
develop neural networks. These studies reported burst experi-
ments in different environments like vacuum or inert or steam
environment, with different material conditions like irradiated or
non-irradiated cladding but data chosen in this study are only for
burst tests conducted on non-irradiated Zircaloy-4 claddings in
steam environment.

Chung and Kassner [5] conducted burst tests on the Zircaloy-4
claddings having 10.9 mm outer diameter and 0.635 mm thick-
ness in steam environment for the heating rate and the internal
pressure ranging from 3 K/s to 145 K/s and 0.5 MPae14.5 MPa,
respectively. The study was focused on understanding the high-
temperature diametrical expansion and rupture behaviour of
Zircaloy-4 fuel cladding tubes in vacuum and steam environments
under transient-heating conditions that are of interest for LOCA. A
high-speed camera was used to record the diametrical and axial
changes of the tube during the burst test. Chapman et al. [6] also
tested Zircaloy-4 cladding having 10.9 mm outer diameter and
0.635 mm thickness in steam environment under LOCA to deter-
mine its deformation behaviour. The heating rate and the internal
pressure were varied from 4 K/s to 30 K/s and 0.8 MPae20 MPa,
respectively [6,16]. An analytical expression was deduced for the
burst temperature as a function of burst pressure. The experimental
results showed excellent correlation between cladding deforma-
tion and surface temperature distribution. Deformation was found
to be extremely sensitive to even small temperature variations.
Sawarn et al. [9] performed transient heating experiments in steam
environment on Zircaloy-4 cladding tubes which were internally
pressurised using argon gas in the range of 3 bare70 bar. The
heating rate was varied from 5 K/s to 19 K/s. The dimensions of
Zircaloy-4 tubes were relevant for Indian pressurised Heavy water
reactor with outer diameter of 15.2 mm and thickness of 0.4 mm.
Like Erbacher et al. [8], they also found that oxidation or oxygen
concentration in cladding tube has very significant effect on the
burst stress. Table 1 provides the specifics of all the data used in the
present research work.

In single tube burst tests under LOCA conditions, Zircaloy-4 fuel
cladding tubes were internally pressurised and transiently heated
to understand their burst or rupture characteristics as well as to
evaluate burst parameters, namely burst stress, burst temperature,
and total circumferential elongation. In other words, internal
pressure and heating ratewere input parameters while burst stress,
burst temperature, and circumferential strain were output param-
eters for the single tube burst experiments performed on Zircaloy-4
cladding under LOCA. It is evident from aforementioned experi-
mental details of single tube burst tests under LOCA conditions
conducted by different researchers that Zircaloy-4 cladding of
different dimensions has been used. In order to develop the ANN
model, initial internal pressure p0 was converted to initial hoop
stress s0 in order to homogenise the different dimensions of clad-
ding tube using following equations [11]:

s0 ¼
p0r
s

(1)

where p0 is the internal pressure, r and s are internal radius and
thickness of the as-received cladding respectively.
3. Development of artificial neural network model

An Artificial Neural Network (ANN) structure essentially con-
sists of layers and nodes (also known as neurons). Any ANN
structure consists of three layers, namely input layer, hidden layer,
and output layer. Hidden layer is the layer that establishes the
functional relationship among inputs and outputs based on
learning by the data. Since the overall ANN architecture affects the



Table 1
Details of experimental data used in the development of ANN model.

Researcher Cladding dimension Heating rate Initial pressure

Internal diameter Outer diameter K/s MPa

mm mm

Chung and Kassner [5] 10.90 9.63 3e220 0.56e14.50
Chapman et al. [6,16] 10.92 9.65 4.8e30.6 0.8e20.35
Sawarn et al. [9] 15.20 14.40 5e19 0.3e7.10
Karb et al. [7] 10.75 9.30 7e19 2.6e9.40

Table 2
Performance of artificial neural network with different architectures.

ANN architecture Prediction error

mean maximum minimum

input-hidden-output % % %

2-1-3 11.60 28.86 0.078
2-2-3 12.39 19.61 0.70
2-4-3 9.56 13.45 0.45
2-5-3 8.96 29.21 1.20
2-1-1-3 12.36 19.44 0.93
2-2-2-3 9.33 14.03 0.63
2-4-4-3 4.79 19.62 0.004
2-5-5-3 6.62 12.27 0.36

Fig. 1. An optimised back-propagation deep neural network with architecture of 2-4-
4-3 used for predicting burst parameters of Zircaloy-4 fuel cladding during LOCA.
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predictive response, one of the issues of the present work is to
develop an optimal ANN architecture. Some of the factors that can
influence the effectiveness of ANN are as follows:
3.1. Network structure

The number of nodes in input layer and output layer are
determined on the basis of number of input and output parameters,
respectively. However, the number of hidden layers and the nodes
in each hidden layer are dependent to the complexity of the input-
output mapping, computational memory and time required to
achieve the response. Too many hidden layers and nodes result in
high computational cost, while too few nodes may not provide
optimised results. Thus, the number of hidden layers and number of
nodes in each hidden layer is decided on a trial-and-error basis to
obtain the best results. Sarkar et al. [17] used ANN with 9-12-1
structure, meaning that it has nine nodes for input layer, one hid-
den layer with twelve nodes, and one node for output layer, for
prediction of in-reactor diametral creep of Zr2$5%Nb pressure
tubes. Jin et al. [18] used two hidden layers with 100 and 50 neu-
rons for predicting the onset of radiation-induced void swelling in
metals used in nuclear reactors. Cottrell et al. [19] varied the
number of hidden layer nodes from 2 to 15 while developing ANN
model to predict the ductile-brittle transition temperature of irra-
diated low-activation martensitic steels. Grzesick and Brol [20]
used ANN having 7-72-72-72-7 structure, meaning that it has three
hidden layers with seventy-two nodes in each layer for predicting
external surface characteristics of machined cylindrical part. In
light of randomness of ANN structure used by different researchers
to predict different kind of outputs, this study tests and compare
the results of different ANN structures selected based on guidelines
given by Zhang et al. [21]. They recommended that number of
nodes in hidden layer should be n/2, n, 2n, and 2nþ1, where n is the
number of nodes in input layer. Since number of nodes in input
layer is equal to number of input variables, which is two for this
study, namely initial hoop stress and heating rate, the number of
nodes in the hidden layer should be 1, 2, 4, and 5. Therefore, by
limiting the trial-and-error process up to two hidden layers, this
study applies eight different network structures, which are 2-1-3,
2-2-3, 2-4-3, 2-5-3, 2-1-1-3, 2-2-2-3, 2-4-4-3, 2-5-5-3.

3.2. Number of training and testing data

ANN is conceptually based on learning from data and thus larger
the database for training the network, higher probability of better
prediction. In material science, data needed to train the ANN is
generated from actual experiments. Many constraints such as the
availability of material, cost, and time required for conducting the
experiments exist for researchers in getting large number data for
training. The amount of training and testing data collected by re-
searchers varies from as low as 20 samples of data for training and
10 samples of data for testing during developing ANN models [22].
Zuperl and Cus [23], Cus and Zuperl [24], Kohli and Dixit [25], Al-
Ahmari [26], and Davim et al. [27] have obtained accurate results
using ANNwith total number of data 40, 30, 31, 28, 30, respectively.
Thus, the dataset of 322 experiments used in the present study is
expected to provide an accurate predictive result for burst param-
eters using ANN. 10 data from this dataset is excluded for testing of
the neural networkd these data were chosen in such a way that it
covers entire range of heating rate and initial hoop stress. 80% of the
remaining data were used for training while 20% were used for
validation. Training data are those data that are presented to the
network during training, and the network is adjusted iteratively to
minimise its error. Validation data are used to measure network
generalization, and to halt training when generalization stops
improving. Testing data have no effect on training and so provide an
independent measure of network performance after the training.

3.3. Network algorithm and its components

Many different ANN algorithms have been proposed by re-
searchers for modelling the response of a system such as Cascade-
forward Backpropagation (BP), Time-delay BP, Elman BP, Radial
basis, Feedforward BP etc. However, feedforward backpropagation
algorithm is mostly applied by researchers for predicting different
kind of outputs [17,18,23]. Zuperl and Cus [23] developed ANN
model using both feedforward BP and radial basis network algo-
rithm, and it was established that the feedforward BP gave more
accurate results. There are also different transfer functions available



Fig. 2. Comparison of experimental burst temperature with ANN model predicted
burst temperature.

Fig. 3. Comparison of experimental burst stress with ANN model predicted burst
stress.
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for ANN algorithm such as log-sigmoid transfer function (logsig),
linear transfer function (purelin), hyperbolic tangent sigmoid
transfer function (tansig), and hard limit transfer function (hardlim).
There is no clear documentation in literature about the selection of
transfer function. Nalbant et al. [28] mentioned that the choice of
transfer function is dependent on the nature of problem. Kohli and
Dixit [25] applied both logsig and tansig transfer functions in their
study, and concluded that both these transfer functions provided
almost similar response. However, a number of studies usually
applied logsig transfer function as it has an advantage that the
output cannot grow infinitely large or small. The difference be-
tween the experimental output and predicted response of ANN
model is error and this error is measure of performance of the
model. The error is referred as performance function and there are
different performance functions to evaluate an ANN model, for
examplemean square error (MSE), mean absolute error (MAE), sum
of squares for error (SSE), root mean square of error (RMSE), mean
absolute percentage error (MAPE) etc. Like the issue of transfer
functions, there is no clarity provided by literature regarding the
section of performance functions. However, most of the ANN
models used for prediction applied mean square error (MSE) per-
formance function.

In light of aforementioned studies performed to predict
different outputs using ANN model, this study applied feedforward
backpropagation algorithm, logsig transfer function, and evaluated
the model based on mean square error (MSE) performance func-
tion. All ANN models are developed in MATLAB R2018.

4. Results

4.1. Optimisation of neural network architecture

Themean prediction errors in percentage are calculated for each
network structure as [29,30]:
%mean prediction error ¼ 1
n

Xn
1

�jexperimental value � predicted v
experimental value
where n is total number of data.
The performance of all the ANN models is provided in Table 2.

Based on minimummean error in the predicted response, the ANN
model with two hidden layers having four nodes in each layer,
shown in Fig. 1, is found to be the most suitable among all. The
mean, maximum, and minimum prediction errors for all the three
burst parametersdburst temperature, burst stress, burst
straindobtained from ANN model are 0.82%, 19.62%, and 0.004%
respectively. The results of this optimised deep neural network
model having 2-4-4-3 structure are only discussed hereafter.

Validation of the optimised neural network

One of the most common problems during the development of
ANN is overfitting. Overfitting makes neural network perform
excellently on the training data, but it gives very poor results when
applied to new dataset or unseen data. This problem is tackled
using a validation data set in the present research to see how the
model performs to new unseen data.

Fig. 2 shows a comparison between experimentally obtained
burst temperature and ANN predicted burst temperature during
LOCA tests. The burst temperatures using ANN model has an
excellent agreement with experimental value and almost all the
values for burst temperature lie within ±8% and the mean error is
2.38%. Linear regression analysis is also performed to evaluate the
coefficient of determination R2 [30] and its value is found to be
0.934. The value of R2 is very close to unity and thus this ANNmodel
is suitable for the prediction of burst temperature.

The prediction of burst stress also agreed well with the exper-
imental values of burst stress and most of the data lies within ±15%
with mean error of 5.50%, as shown in Fig. 3. The coefficient of
determination R2 for burst stress is 0.975.

The circumferential burst strain that gives information
regarding ballooning of the cladding tube at burst location is also
well predicted by the ANN model. The mean error in burst strain
prediction is 9.27% and the coefficient of determination R2 is 0.953.
aluej � 100
�

(2)



Fig. 4. Comparison of experimental burst strain with ANN model predicted burst
strain. Fig. 5. Comparison of deviation in burst stress obtained from burst criterion and ANN

model against the experimental burst stress.
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The predicted burst strain is plotted against experiential burst
strain in Fig. 4.
5. Discussion

The result of the developed ANN model is compared with burst
criterion developed for non-irradiated Zircaloy-4 under loss-of-
coolant accident by Manngard et al. [10]. A MATLAB code is writ-
ten to develop the burst criterion in accordance with governing
equations proposed by Manngard et al. [10]. This burst criterion
accounts for solid-to-solid phase transformation kinetics, cladding
creep deformation, oxidation, and rupture as functions of temper-
ature and time in a unified way during the LOCA transient. Ten
different experimental conditions from the collected data-
setdtesting data as explained in section 2 that covers the entire
range of heating rate and initial hoop stressdare used to evaluate
the performance of the developed ANN model. The burst parame-
ters for same input parameters are also evaluated using the burst
criterion and compared with ANNmodel predicted outputs. Table 3
presents a comparison of burst parameters, namely burst stress,
burst temperature, and burst strain, obtained from the optimised
ANN model and burst criterion [10] against the experimental
values.

The burst stress, burst temperature, and burst strain obtained
Table 3
Comparison of ANN predicted burst parameters with the output of burst criterion.

Sample ID Input parameters Output burst parameters

Heating rate Initial hoop stress Burst hoop stress

# K/s MPa MPa

Experiment Criterion AN

IPL-5 5 19.94 31.23 29.96 31.
10C 5 105.07 304.80 243.97 298
SR-19 25.9 6.88 9.90 7.81 9.2
SR-1 24.2 161.73 198 249.03 201
IS-43 50 5.5 5.74 5.79 6.5
IS-86 51 117.2 213.90 204.27 208
IPL-49 100 6.71 12.16 7.40 9.7
IS-11 101 111.54 264.33 186.33 253
IS-15 130 5.58 9.86 5.85 9.2
IPL-67 130 100.23 160.13 172.32 156
from burst criterion have average deviation of 19%, 12%, and 53%
respectively whereas the developed ANN model predicted these
parameters with average deviation of 6%, 2%, and 8% respectively.
Comparatively huge improvement in accuracy of burst parameters
prediction with use of artificial neural network model comes from
the facts that the criterion (a) developed on the basis of empirical
data of Erbacher et al. [8] which has limited range of heating and
internal stress (b) based on ad hoc governing equation for creep
behaviour of Zircaloy-4 in mixed aþb-phase (c) does not account
for azimuthal temperature variation. Deviation of same order in
outputs of burst criterion has been observed in other reported
works [11,31]. All these drawbacks are overcome with the use of
neural network since it does not require theoretical or empirical
relationship. It learns fromdata and develop functional relationship
and the higher accuracy in its prediction establishes that it out-
performs the burst criterion and may be used to study the rupture
behaviour of Zircaloy-4 cladding tubes under LOCA transients. To
visualise the deviation from experimental values, a ratio of exper-
imental burst stress to burst stress obtained from burst criterion,
and a ratio of experimental burst stress to burst stress obtained
from optimised ANN model have been obtained. These ratios have
been plotted for each test to see deviation from ideal ratio of 1.
Similar ratios are also calculated for burst strain. Fig. 5 plots burst
Burst temperature Burst strain

K %

N Experiment Criterion ANN Experiment Criterion ANN

91 1166 1206 1136 23.09 20.36 27.92
.37 966 748 942 73 42.12 72.26
0 1439 1351 1406 26 6.367 28.67
.53 961 741 968 16 21.58 17.34
0 1520 1410 1481 32 2.64 32.02
.40 983 807 1012 37 27.79 39.87
5 1448 1454 1476 38 4.89 40.72
.13 1053 837 1054 58 25.66 64.42
0 1554 1486 1528 32 2.35 31.37
.79 1068 863 1070 33 27.11 30.77



Fig. 6. Comparison of deviation in burst strain obtained from burst criterion and ANN
model against the experimental burst strain.
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stress ratio for all the testing data tests mentioned in Table 3 while
Fig. 6 compares the scatter in burst strain. Burst stress predicted
from ANNmodel has less scatter compared to burst criterion values
and it is closer to ratio of 1. ANNmodel predicts the burst strain in a
much superior way compared to burst criterion and the value
nearly follows the line of ratio equal to 1 while the burst strain
obtained from criterion has scatter too high to be considered
reliable.

It may also be inferred from Table 3 that for a given heating rate,
a higher initial pressure results in a lower burst temperature. Burst
temperatures increase significantly with increase in heating rate for
a given internal pressure, that is, higher heating rates produce
higher burst temperatures. These phenomena are experientially
established by different researchers and well captured by ANN
model in the present research. The performance of the developed
ANN model is superior to the burst criterion on the unseen
experimental burst dataset of different researchers, and it impli-
cates that this ANN model may be utilised for prediction of burst
parameters during loss-of-coolant accident experiments. Never-
theless, the focus of the present research is to demonstrate the use
of artificial intelligence for predictions of burst parameters during
single clad tube burst tests, and to compare its performance against
the semi-empirical burst criterion.
6. Conclusions

An artificial neural network has been developed based on data
obtained by different researchers from the single tube burst ex-
periments conducted on Zircaloy-4 fuel cladding under simulated
loss-of-coolant accident transients. The artificial neural network
has been optimised to predict the burst parameters of Zircaloy-4
nuclear fuel cladding during the loss-of-coolant accident tran-
sients. The outcomes of the neural network model are in excellent
agreement with the experimental results. The results of the
developed ANN model are also compared with phenomenological
burst criterion developed in literature and it was found that ANN
outperforms the burst criterion. The burst stress, burst tempera-
ture, and burst strain obtained from burst criterion have average
deviation of 19%, 12%, and 53% respectively whereas the developed
ANN model predicted these parameters with average deviation of
6%, 2%, and 8% respectively. It is also revealed that for a given
heating rate, a higher initial stress results in a lower burst tem-
perature. Burst temperatures increase significantly with increase in
heating rate for a given internal pressure, that is, higher heating
rates produce higher burst temperatures.
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