References
- J. Xiu, H. Jing, Y. Han, L. Zhao, L. Xu, Effect of groove on socket welds under the condition of vibration fatigue, J. Nucl. Mater. 433 (2013) 10-16. https://doi.org/10.1016/j.jnucmat.2012.08.051
- Vibration Fatigue Testing of Socket Welds (PWRMRP-07), EPRI, Palo Alto, CA, 1999.
- Y.H. Choi, S.Y. Choi, Socket weld integrity in nuclear piping under fatigue loading condition, Nucl. Eng. Des. 237 (2007) 213-218. https://doi.org/10.1016/j.nucengdes.2006.06.005
- D.N. Hopkins, D.J. Benac, Investigation of fatigue-induced socket-welded joint failures for small-bore piping used in power plants, Practical Fail. Anal. 1 (2001) 71-82. https://doi.org/10.1007/BF02715165
- P. Hirschberg, P.C. Riccardella, M. Sullivan, R. Carter, Vibration Fatgiue Testing of Socket Welds, Phase II, Pennsylvania State University CiteSeerx, 1998, pp. 1-13 (Available Online).
- W. Kuang, X. Wu, E.H. Han, Influence of dissolved oxygen concentration on the oxide film formed on Alloy 690 in high temperature water, Corrosion Sci. 69 (2013) 197-204. https://doi.org/10.1016/j.corsci.2012.12.003
- L. Zhang, J. Wang, Effect of dissolved oxygen content on stress corrosion cracking of a cold worked 316L stainless steel in simulated pressurized water reactor primary water environment, J. Nucl. Mater. 446 (2014) 15-26. https://doi.org/10.1016/j.jnucmat.2013.11.027
- M. Fontana, Corrosion Engineering, Corrosion Engineering, third ed., Mcgraw-Hill International, 1986, pp. 40-60.
- P.L. Andresen, Emerging issues and fundamental processes in environmental cracking in hot water, Corrosion 64 (2008) 439-464. https://doi.org/10.5006/1.3278483
- W. Kuang, X. Wu, E.H. Han, The oxidation behaviour of 304 stainless steel in oxygenated high temperature water, Corrosion Sci. 52 (2010) 4081-4087. https://doi.org/10.1016/j.corsci.2010.09.001
- J. Kuniya, I. Masaoka, R. Sasaki, Effect of cold work on the stress corrosion cracking of nonsensitized aisi 304 stainless steel in high-temperature oxygenated water, Corrosion 44 (1988) 21-28. https://doi.org/10.5006/1.3582020
- M. Hansson, S. Yamamoto, Stress corrosion cracking testing of non-sensitised stainless steel, Ski Rep (2004) 1-36, 200429.
- J. Isselin, R. Kasada, A. Kimura, Work hardening, sensitization, and potential effects on the susceptibility to crack initiation of 316L stainless steel in BWR environment, J. Nucl. Sci. Technol. 48 (2011) 1462-1470. https://doi.org/10.1080/18811248.2011.9711839
- N. Ishiyama, M. Mayuzumi, Y. Mitzutani, J. Tani, Stress corrosion cracking of type 316 and 316L stainless steels in high temperature water, in: Proc. 12th Int. Conf. Environ. Degrad. Mater. Nucl. Power Syst. React, 2005, pp. 57-64.
- B. Beverskog, I. Puigdomenech, Pourbaix diagrams for the ternary system of iron-chromium-nickel, Corrosion 55 (1999) 1077-1087. https://doi.org/10.5006/1.3283945
- D. Cubicciotti, Potential-pH diagrams for alloy-water systems under LWR conditions, J. Nucl. Mater. 201 (1993) 176-183. https://doi.org/10.1016/0022-3115(93)90173-V
- W. Kuang, X. Wu, E.H. Han, Influence of dissolved oxygen concentration on the oxide film formed on 304 stainless steel in high temperature water, Corrosion Sci. 63 (2012) 259-266. https://doi.org/10.1016/j.corsci.2012.06.007
- B. Stellwag, The mechanism of oxide film formation on austenitic stainless steels in high temperature water, Corrosion Sci. 40 (1998) 337-370. https://doi.org/10.1016/S0010-938X(97)00140-6
- Y. Asakura, H. Karasawa, M. Sakagami, S. Uchida, Relationships between corrosion behavior of AISI 304 stainless steel in high-temperature pure water and lts oxide film structures, Corrosion 45 (1989) 119-124. https://doi.org/10.5006/1.3577828
- T. Magnin, A. Chambreuil, B. Bayle, The corrosion-enhanced plasticity model for stress corrosion cracking in ductile fcc alloys, Acta Mater. 44 (1996) 1457-1470. https://doi.org/10.1016/1359-6454(95)00301-0
- S. Lozano-perez, T. Yamada, T. Terachi, M. Schro, Multi-scale characterization of stress corrosion cracking of cold-worked stainless steels and the influence of Cr content, Acta Mater. 57 (2009) 5361-5381. https://doi.org/10.1016/j.actamat.2009.07.040
- P. Fejes, L. Ljungberg, L. Unneberg, Impurity effects in BWR water chemistry, Int. J. Pres. Ves. Pip. 34 (1988) 47-57. https://doi.org/10.1016/0308-0161(88)90041-5
- C. Ornek, D.L. Engelberg, Towards understanding the effect of deformation mode on stress corrosion cracking susceptibility of grade 2205 duplex stainless steel, Mater. Sci. Eng. 666 (2016) 269-279. https://doi.org/10.1016/j.msea.2016.04.062
-
C.L. Lai, W.F. Lu, J.Y. Huang, Effect of
${\delta}$ -ferrite content on the stress corrosion cracking behavior of cast austenitic stainless steel in high-temperature water environment, Corrosion 70 (2014) 591-597. https://doi.org/10.5006/1155 - Y.H. Lu, Q.J. Peng, T. Sato, T. Shoji, An ATEM study of oxidation behavior of SCC crack tips in 304L stainless steel in high temperature oxygenated water, J. Nucl. Mater. 347 (2005) 52-68. https://doi.org/10.1016/j.jnucmat.2005.07.006
- F.P. Ford, Quantitative prediction of environmentally assisted cracking, Corrosion 52 (1996) 375-395. https://doi.org/10.5006/1.3292125
- N. Saito, H. Sakamoto, K. Sugimoto, Crevice corrosion of austenitic alloys in high-temperature water, Corrosion 54 (1998) 700-712. https://doi.org/10.5006/1.3284889
- S. Ghosh, V. Kain, Microstructural changes in AISI 304L stainless steel due to surface machining : effect on its susceptibility to chloride stress corrosion cracking, J. Nucl. Mater. 403 (2010) 62-67. https://doi.org/10.1016/j.jnucmat.2010.05.028
- C. Garcia, F. Martin, P. De Tiedra, J.A. Heredero, M.L. Aparicio, Effects of prior cold work and sensitization heat treatment on chloride stress corrosion cracking in type 304 stainless steels, Corrosion Sci. 43 (2001) 1519-1539. https://doi.org/10.1016/S0010-938X(00)00165-7
- Y.Z. Huang, J.M. Titchmarsh, TEM investigation of intergranular stress corrosion cracking for 316 stainless steel in PWR environment, Acta Mater. 54 (2006) 635-641. https://doi.org/10.1016/j.actamat.2005.10.011
- Y.F. Shen, X.X. Li, X. Sun, Y.D. Wang, L. Zuo, Twinning and martensite in a 304 austenitic stainless steel, Mater. Sci. Eng. 552 (2012) 514-522. https://doi.org/10.1016/j.msea.2012.05.080