DOI QR코드

DOI QR Code

Development of hand-held coded-aperture gamma ray imaging system based on GAGG(Ce) scintillator coupled with SiPM array

  • Received : 2020.02.04
  • Accepted : 2020.04.08
  • Published : 2020.11.25

Abstract

Emerging gamma ray detection applications that utilize neutron-based interrogation result in the prompt emission of high-energy (>2 MeV) gamma-rays. Rapid imaging is enabled by scintillators that possess high density, high atomic number, and excellent energy resolution. In this paper, we evaluate the bright (50,000 photons/MeV) oxide scintillator, cerium-doped Gd2Al2Ga3O12 (GAGG(Ce)). A silicon photomultiplier (SiPM) array is coupled to a GAGG(Ce) scintillator array (12 × 12 pixels) and integrated into a coded-aperture based gamma-ray imaging system. A resistor-based symmetric charge division circuit was used reduce the multiplicity of the analog outputs from 144 to 4. The developed system exhibits 9.1%, 8.3%, and 8.0% FWHM energy resolutions at 511 keV, 662 keV, and 1173.2 keV, respectively. In addition, a pixel-identification resolution of 602 ㎛ FWHM was obtained from the GAGG(Ce) scintillator array.

Keywords

References

  1. J. Iwanowska, et al., Performance of cerium-doped $Gd_3Al_2Ga_3O_{12}$ (GAGG:Ce) scintillator in gamma-ray spectrometry, Nucl. Instrum. Methods A 712 (2013) 34-40. https://doi.org/10.1016/j.nima.2013.01.064
  2. A. Kishimoto, et al., Development of a compact scintillator-based high-resolution Compton camera for molecular imaging, Nucl. Instrum. Methods A. 845 (2017) 656-659. https://doi.org/10.1016/j.nima.2016.06.056
  3. S. Yamamoto, et al., Development of a high resolution gamma camera system using finely grooved GAGG scintillator, Nucl. Instrum. Methods A. 845 (2017) 656-659. https://doi.org/10.1016/j.nima.2016.06.056
  4. T. Kato, et al., A novel gamma-ray detector with submillimeter resolutions using a monolithic MPPC array with pixelized Ce:LYSO and Ce:GGAG crystals, Nucl. Inst. Meth. A 699 (2013) 235. https://doi.org/10.1016/j.nima.2012.04.008
  5. M. Jeong, B. Van, B. Wells, L. D'Aries, M. Hammig, Scalable gamma-ray camera for wide-area search based on silicon photomultipliers array, Rev. Sci. Instrum. 89 (2018), 033106. https://doi.org/10.1063/1.5016563
  6. M. Jeong, B. Van, B. Wells, L. D'Aries, M. Hammig, Comparison between pixelated scintillators: CsI(Tl), $LaCl_3(Ce)$ and LYSO(Ce) when coupled to a silicon photomultipliers array, Nucl. Instrum. Methods A. 893 (2018) 75-83. https://doi.org/10.1016/j.nima.2018.03.024
  7. M. Jeong, M. Hammig, Comparison of gamma ray localization using system matrixes obtained by either MCNP simulations or ray-driven calculations for a coded-aperture imaging system, Nuc. Inst. Meth A 954 (2020) 161353. https://doi.org/10.1016/j.nima.2018.10.031
  8. E. Min, Y. Jung, H. Lee, J. Jang, K. Kim, S. Joo, K. Lee, Development of a multipurpose Gamma-Ray imaging detector module with enhanced expandability, IEEE Trans. Nucl. Sci. 64 (2017) 1833. https://doi.org/10.1109/TNS.2017.2649563
  9. S.F. Mughabghab, Thermal Neutron Capture Cross- Sections: Resonance Integrals and G-Factors, vol. 440, IAEA Nuclear Data Section INDC (NDS), 2003.
  10. G. Lee, Y. Chang, T. Kim, "Properties and possible application areas", ultrasmall lanthanide oxide nanoparticles for biomedical imaging and therapy, chapter 2, 2014, pp. 15-28.
  11. A. Piotr, Rodnyi, "Physical Processes in Inorganic Scintillators", CRC Press, Boca Raton, New York, 1994.
  12. G. Tamulatis, et al., Improvement of response time in GAGG:Ce scintillation crystals by magnesium codoping, J. Appl. Phys. 124 (2018) 215907. https://doi.org/10.1063/1.5064434
  13. J. Kataoka, et al., Recent progress of MPPC-based scintillation detectors in high precision X-ray and gamma-ray imaging, Nucl. Instrum. Methods A. 784 (2015) 248-254. https://doi.org/10.1016/j.nima.2014.11.004
  14. S. David, M. Georgiou, E. Fysikopoulos, G. Loudos, Evaluation of a SiPM array coupled to a $Gd_3Al_2Ga_3O_{12}$:Ce (GAGG:Ce) discrete scintillator, Phys. Med. 31 (7) (2015) 763-766. https://doi.org/10.1016/j.ejmp.2015.03.008
  15. M. Kobayashi, et al., Significantly different pulse shapes for ${\gamma}$- and ${\alpha}$-rays in $Gd_3Al_2Ga_3O_{12}:Ce^{3+}$ scintillating crystals, Nucl. Instrum. Methods A. 694 (2002) 91-94. https://doi.org/10.1016/j.nima.2012.07.055
  16. H100 Specification Sheet, 2020. www.h3dgamma.com.
  17. J. Amgarou, et al., A comprehensive experimental characterization of the iPIX gamma imager, J. Inst. Met. 11 (2016) P08012.

Cited by

  1. Impact of aperture-thickness on the real-time imaging characteristics of coded-aperture gamma cameras vol.53, pp.4, 2021, https://doi.org/10.1016/j.net.2020.09.012
  2. Development of a modular high-sensitivity high-uniformity gamma camera for radiation monitoring applications vol.1003, 2020, https://doi.org/10.1016/j.nima.2021.165340
  3. A Comprehensive Survey of Readout Strategies for SiPMs Used in Nuclear Imaging Systems vol.8, pp.7, 2020, https://doi.org/10.3390/photonics8070266
  4. Performance studies of compact GGAG:Ce,B thermal neutron detector coupled to Si-based photosensors vol.95, pp.4, 2020, https://doi.org/10.1007/s12043-021-02249-z
  5. Compact lightweight imager of both gamma rays and neutrons based on a pixelated stilbene scintillator coupled to a silicon photomultiplier array vol.11, pp.1, 2020, https://doi.org/10.1038/s41598-021-83530-4