DOI QR코드

DOI QR Code

Multi-Valued Logic Device Technology; Overview, Status, and Its Future for Peta-Scale Information Density

  • 투고 : 2020.06.10
  • 심사 : 2020.06.10
  • 발행 : 2020.06.30

초록

Complementary metal-oxide-semiconductor (CMOS) technology is now facing a power scaling limit to increase integration density. Since 1970s, multi-valued logic (MVL) has been considered as promising alternative to resolve power scaling challenge for increasing information density up to peta-scale level by reducing the system complexity. Over the past several decades, however, a power-scalable and mass-producible MVL technology has been absent so that MVL circuit and system implementation have been delayed. Recently, compact MVL device researches incorporating multiple-switching characteristics in a single device such as 2D heterojunction-based negative-differential resistance (NDR)/transconductance (NDT) devices and quantum-dot/superlattices-based constant intermediate current have been actively performed. Meanwhile, wafer-scale, energy-efficient and variation-tolerant ternary-CMOS (T-CMOS) technology has been demonstrated through commercial foundry. In this review paper, an overview for MVL development history including recent studies will be presented. Then, the status and its future research direction of MVL technology will be discussed focusing on the T-CMOS technology for peta-scale information processing in semiconductor chip.

키워드

참고문헌

  1. D. J. Frank. (2002, Mar.). Power-constrained CMOS scaling limits. IBM J. Res. Develop. [Online]. vol. 46, pp. 235-244. Available: https://doi.org/10.1147/rd.462.0235
  2. V. V. Zhirnov. (2003, Nov.). Limits to binary logic switch scaling - a gedanken model. Proc. IEEE. [Online]. vol. 91, pp. 1934-1939. Available: https://doi.org/10.1109/JPROC.2003.818324
  3. Smith, K. C. (1981, Sept.). The prospects for multivalued logic: A technology and applications view. IEEE Transactions on Computers. [Online]. C-30(9), pp. 619-634. Available: https://doi.org/10.1109/TC.1981.1675860
  4. Hurst, S. L. (1984, Dec.). Multiple-valued logic-Its status and its future. IEEE transactions on Computers. [Online]. 33(12), pp. 1160-1179. Available: https://doi.org/10.1109/TC.1984.1676392
  5. Esser, S. K. (2016, Sep.). Convolutional networks for fast, energy-efficient neuromorphic computing. [Online]. Proc. Natl Acad. Sci. USA. 113(41), pp. 11441-11446 Available: https://doi.org/10.1073/pnas.1604850113
  6. Lennie, P. (2003, Mar.). The cost of cortical computation. [Online]. Curr. Biol. 13(6), pp. 493-497. Available: https://doi.org/10.1016/S0960-9822(03)00135-0
  7. S. Okumura et. (2019, June.). A Ternary Based Bit Scalable, 8.80 TOPS/W CNN accelerator with Many-core Processing-in-memory Architecture with 896K synapses/mm2. VLSI Circuits. [Online].Available: https://doi.org/10.23919/VLSIC.2019.8778187
  8. C.systems. (2019, May.). Wafer-scale Deep Learning. HotChips. [Online]. 31 Available:https://www.hotchips.org/hc31/HC31_1.13_Cerebras.SeanLie.v02.pdf
  9. H. T. (1977, Mar.). Design of ternary COS/MOS memory and sequential circuits. IEEE Trans. Comput. [Online]. C-26(3), pp.281-288. Available: https://doi.org/10.1109/TC.1977.1674821
  10. Mouftah, H. T. (1982, Dec.). Injected voltage low-power CMOS for 3-valued logic. IEE Proceedings G-Electronic Circuits and Systems. [Online]. 129(6). pp. 270-272. IET. Available: https://doi.org/10.1049/ip-g-1.1982.0047
  11. A. Heung. (1985, Apr.). Depletion/enhancement CMOS for a lower power family of three-valued logic circuits. IEEE JSSC. Online]. sc-20(2). Available: https://doi.org/10.1109/JSSC.1985.1052354
  12. A. Raychowdhury. (2005, Mar.). Carbon-nanotube-based voltage-mode multiple-valued logic design. IEEE Tran. Nanotech. [Online]. 4(2). Available: https://doi.org/10.1109/TNANO.2004.842068
  13. S. Lin. (2011, Mar.). CNTFET-based design of ternary logic gates and arithmetic circuits. IEEE Trans. Nanotechnol. [Online]. 10(2), pp. 217-225. Available: https://doi.org/10.1109/TNANO.2009.2036845
  14. W. Gang. (2009, Feb.). Ternary logic circuit design based on single electron transistors. J. Semiconductor. [Online]. 30(2). Available: https://iopscience.iop.org/article/10.1088/1674-4926/30/2/025011
  15. Gage Hills. (2019, Aug.). Modern microprocessor built from complementary carbon nanotube transistors. Nature. [Online]. 572(7771) Pages 595-602. Available: https://doi.org/10.1038/s41586-019-1493-8
  16. Heo, Sunwoo. (2018, Dec.). Ternary full adder using multi-threshold voltage graphene barristors. IEEE Electron Device Letters. [Online]. 39(12), pp. 1948-1951. Available: https://doi.org/10.1109/LED.2018.2874055
  17. Karmakar. (2017, June.). Ternary logic gates using quantum dot gate FETs (QDGFETs). Silicon. [Online]. 6(3), pp. 169-178. Available: https://doi.org/10.1007/s12633-013-9175-x
  18. Lee, Lynn. (2019, April.). ZnO composite nanolayer with mobility edge quantization for multi-value logic transistors. Nature communications. [Online]. 10(1), pp. 1-9. Available: https://doi.org/10.1038/s41467-019-09998-x
  19. J. Shim et al. (2019, Nov.). Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic. Nature Communications. [Online]. 7. Available: https://www.nature.com/articles/ncomms13413
  20. Kim. Y. J. (2016, Dec.). Demonstration of complementary ternary graphene field-effect transistors. Scientific reports. [Online]. 6, 39353. Available: https://www.nature.com/articles/srep39353 https://doi.org/10.1038/srep39353
  21. Huang, Mingqiang. (2017, Oct.). Multifunctional high-performance van der Waals heterostructures. Nature nanotechnology. [Online]. 12(12), 1148. Available: https://doi.org/10.1038/nnano.2017.208
  22. Lee, Sejoon. (2017, Sep.). Extraordinary Transport Characteristics and Multivalue Logic Functions in a Silicon-Based Negative-Differential Transconductance Device. Scientific reports. [Online]. 7(1), pp. 1-9. Available: https://doi.org/10.1038/s41598-017-11393-9
  23. Kobashi, Kazuyoshi. (2018, July.). Multi-Valued Logic Circuits Based on Organic Anti-ambipolar Transistors. Nano letters. [Online]. 18(7), pp. 4355-4359. Available: https://doi.org/10.1021/acs.nanolett.8b01357
  24. Yoo, Hocheon. (2019, May.). Negative Transconductance Heterojunction Organic Transistors and their Application to Full‐Swing Ternary Circuits. Advanced Materials. [Online]. 31(29), 1808265. Available: https://doi.org/10.1002/adma.201808265
  25. Lim, Ji‐Hye. (2019, Sep.). Double Negative Differential Transconductance Characteristic: From Device to Circuit Application toward Quaternary Inverter. Advanced Functional Materials. [Online]. 29(48), 1905540. Available: https://doi.org/10.1002/adfm.201905540
  26. Jeong, Jae Won. (2019, July.). Tunnelling-based ternary metal-oxide-semiconductor technology. Nature Electronics. [Online]. 2(7), pp. 307-312. Available: https://doi.org/10.1038/s41928-019-0272-8
  27. Shin, Sunhae. (2015, July.). Compact design of low power standard ternary inverter based on OFF-state current mechanism using nano-CMOS technology. IEEE Transactions on Electron Devices. [Online]. 62(8), pp. 2396-2403. Available: https://doi.org/10.1109/TED.2015.2445823
  28. Ternary digit logic circuit, by Kim, Kyung Rok. (2018, Nov 20). U.S. Patent No. 10,133,550. 20 [Online]. Available: https://patents.google.com/patent/US10133550B2/en
  29. Shin, Sunhae. (2017, May.). CMOS-compatible ternary device platform for physical synthesis of multi-valued logic circuits. IEEE 47th International Symposium on Multiple-Valued Logic (ISMVL). [Online]. pp. 284-289. Available: https://doi.org/10.1109/ISMVL.2017.48
  30. Park, B.-G, "Quantum Well Devices" in Nanoelectronic Devices, 1st ed. Singapore, 2012, pp. 222-223.