DOI QR코드

DOI QR Code

Involvement of Estrogen Receptor-α in the Activation of Nrf2-Antioxidative Signaling Pathways by Silibinin in Pancreatic β-Cells

  • Chu, Chun (Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University) ;
  • Gao, Xiang (Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University) ;
  • Li, Xiang (Qiqihaer Middle School) ;
  • Zhang, Xiaoying (Department of Food Quality and Safety, Faculty of Functional Food and Wine, Shenyang Pharmaceutical University) ;
  • Ma, Ruixin (Department of Food Quality and Safety, Faculty of Functional Food and Wine, Shenyang Pharmaceutical University) ;
  • Jia, Ying (Department of Food Quality and Safety, Faculty of Functional Food and Wine, Shenyang Pharmaceutical University) ;
  • Li, Dahong (Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University) ;
  • Wang, Dongkai (Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University) ;
  • Xu, Fanxing (Wuya College of Innovation, Shenyang Pharmaceutical University)
  • Received : 2019.04.28
  • Accepted : 2019.09.04
  • Published : 2020.03.01

Abstract

Silibinin exhibits antidiabetic potential by preserving the mass and function of pancreatic β-cells through up-regulation of estrogen receptor-α (ERα) expression. However, the underlying protective mechanism of silibinin in pancreatic β-cells is still unclear. In the current study, we sought to determine whether ERα acts as the target of silibinin for the modulation of antioxidative response in pancreatic β-cells under high glucose and high fat conditions. Our in vivo study revealed that a 4-week oral administration of silibinin (100 mg/kg/day) decreased fasting blood glucose with a concurrent increase in levels of serum insulin in high-fat diet/streptozotocin-induced type 2 diabetic rats. Moreover, expression of ERα, NF-E2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) in pancreatic β-cells in pancreatic islets was increased by silibinin treatment. Accordingly, silibinin (10 μM) elevated viability, insulin biosynthesis, and insulin secretion of high glucose/palmitate-treated INS-1 cells accompanied by increased expression of ERα, Nrf2, and HO-1 as well as decreased reactive oxygen species production in vitro. Treatment using an ERα antagonist (MPP) in INS-1 cells or silencing ERα expression in INS-1 and NIT-1 cells with siRNA abolished the protective effects of silibinin. Our study suggests that silibinin activates the Nrf2-antioxidative pathways in pancreatic β-cells through regulation of ERα expression.

Keywords

References

  1. Alonsomagdalena, P., Ropero, A. B., Carrera, M. P., Cederroth, C. R., Baquie, M., Gauthier, B. R., Nef, S., Stefani, E. and Nadal, A. (2008) Pancreatic insulin content regulation by the estrogen receptor $ER{\alpha}$. PLoS ONE 3, e2069. https://doi.org/10.1371/journal.pone.0002069
  2. Chen, K., Zhao, L., He, H., Wan, X., Wang, F. and Mo, Z. (2014) Silibinin protects beta cells from glucotoxicity through regulation of the insig-1/srebp-1c pathway. Int. J. Mol. Med. 34, 1073-1080. https://doi.org/10.3892/ijmm.2014.1883
  3. Chu, C., Li, D., Zhang, S., Ikejima, T.,Jia, Y., Wang, D. and Xu, F. (2018) Role of silibinin in the management of diabetes mellitus and its complications. Arch. Pharm. Res. 41, 785-796. https://doi.org/10.1007/s12272-018-1047-x
  4. Corchete, P. (2008) Silybum marianum (L.) Gaertn: the source of silymarin. In Bioactive Molecules and Medicinal Plants, pp. 123-148. Springer.
  5. Gerber, P. A. and Rutter, G. A. (2017) The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxid. Redox. Signal. 26, 501-518. https://doi.org/10.1089/ars.2016.6755
  6. Ghorbani, A. (2013) Best herbs for managing diabetes: a review of clinical studies. Braz. J. Pharm. Sci. 49, 413-422. https://doi.org/10.1590/S1984-82502013000300003
  7. Giannarelli, R., Aragona, M., Coppelli, A. and Del Prato, S. (2003) Reducing insulin resistance with metformin: the evidence today. Diabetes Metab. 29, 6S28-6S35. https://doi.org/10.1016/S1262-3636(07)70079-4
  8. Govindaraj, J. and Sorimuthu Pillai, S. (2015) Rosmarinic acid modulates the antioxidant status and protects pancreatic tissues from glucolipotoxicity mediated oxidative stress in high-fat diet: Streptozotocin-induced diabetic rats. Mol. Cell. Biochem. 404, 143-159. https://doi.org/10.1007/s11010-015-2374-6
  9. Hidalgo-Lanussa, O., Avila-Rodriguez, M., Baez-Jurado, E., Zamudio, J., Echeverria, V., Garcia-Segura, L. M. and Barreto, G. E. (2018) Tibolone reduces oxidative damage and inflammation in microglia stimulated with palmitic acid through mechanisms involving estrogen receptor beta. Mol. Neurobiol. 55, 5462-5477. https://doi.org/10.1007/s12035-017-0777-y
  10. Hung, H.-Y., Qian, K., Morris-Natschke, S. L., Hsu, C.-S. and Lee, K.-H. (2012) Recent discovery of plant-derived anti-diabetic natural products. Nat. Prod. Rep. 29, 580-606. https://doi.org/10.1039/c2np00074a
  11. Hwang, Y. P. and Jeong, H. G. (2010) Ginsenoside Rb1 protects against 6-hydroxydopamine-induced oxidative stress by increasing heme oxygenase-1 expression through an estrogen receptorrelated PI3K/Akt/Nrf2-dependent pathway in human dopaminergic cells. Toxicol. Appl. Pharm. 242, 18-28. https://doi.org/10.1016/j.taap.2009.09.009
  12. International Diabetes Federation (2017) IDF Diabetes Atlas (8th ed). IDF, Brussels.
  13. Jeong, J. C., Shin, W. Y., Kim, T. H., Kwon, C. H., Kim, J. H., Kim, Y. K. and Kim, K. H. (2011) Silibinin induces apoptosis via calpain-dependent aif nuclear translocation in U87MG human glioma cell death. J. Exp. Clin. Cancer Res. 30, 44. https://doi.org/10.1186/1756-9966-30-44
  14. Kawamori, D. (2017) Exploring the molecular mechanisms underlying ${\alpha}$- and ${\beta}$-cell dysfunction in diabetes. Diabetol. Int. 8, 248-256. https://doi.org/10.1007/s13340-017-0327-x
  15. Khan, N. M., Haseeb, A., Ansari, M. Y., Devarapalli, P.,Haynie, S. and Haqqi, T. M. (2017) Wogonin, a plant derived small molecule, exerts potent anti-inflammatory and chondroprotective effects through the activation of ROS/ERK/Nrf2 signaling pathways in human osteoarthritis chondrocytes. Free Radic. Biol. Med. 106, 288-301. https://doi.org/10.1016/j.freeradbiomed.2017.02.041
  16. Lee, S. J., Choi, S. E., Jung, I. R., Lee, K. W. and Kang, Y. (2013) Protective effect of nicotinamide on high glucose/palmitate-induced glucolipotoxicity to INS-1 beta cells is attributed to its inhibitory activity to sirtuins. Arch. Biochem. Biophys. 535, 187-196. https://doi.org/10.1016/j.abb.2013.03.011
  17. Mackenbach, J. D., den Braver, N. R. and Beulens, J. W. J. (2018) Spouses, social networks and other upstream determinants of type 2 diabetes mellitus. Diabetologia 61, 1517-1521. https://doi.org/10.1007/s00125-018-4607-1
  18. Morillas-Ruiz, J. M., Garcia, J. A. V., Lopez, F. J., Vidal-Guevara, M. L. and Zafrilla, P. (2006) Effects of polyphenolic antioxidants on exercise-induced oxidative stress. Clin. Nutr. 25, 444-453. https://doi.org/10.1016/j.clnu.2005.11.007
  19. Nabavi, S. F., Barber, A. J., Spagnuolo, C., Russo, G. L., Daglia, M., Nabavi, S. M. and Sobarzo-Sanchez, E. (2016) Nrf2 as molecular target for polyphenols: a novel therapeutic strategy in diabetic retinopathy. Crit. Rev. Clin. Lab. Sci. 53, 293-312. https://doi.org/10.3109/10408363.2015.1129530
  20. Nadal. A., Alonso-Magdalena, P., Soriano, S., Quesada, I. and Ropero, A. B. (2009) The pancreatic ${\beta}$-cell as a target of estrogens and xenoestrogens: implications for blood glucose homeostasis and diabetes. Mol. Cell. Endocrinol. 304, 63-68. https://doi.org/10.1016/j.mce.2009.02.016
  21. Pi, J., Zhang, Q., Fu, J., Woods, C. G., Hou, Y., Corkey, B. E., Collins, S. and Andersen,M. E. (2010) ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function. Toxicol. Appl. Pharmacol. 244, 77-83. https://doi.org/10.1016/j.taap.2009.05.025
  22. Robertson, R. (2006) Oxidative stress and impaired insulin secretion in type 2 diabetes. Curr. Opin. Pharmacol. 6, 615-619. https://doi.org/10.1016/j.coph.2006.09.002
  23. Rochette, L., Zeller, M., Cottin, Y. and Vergely, C. (2014) Diabetes, oxidative stress and therapeutic strategies. Biochim. Biophys. Acta 1840, 2709-2729. https://doi.org/10.1016/j.bbagen.2014.05.017
  24. Saad, B., Zaid, H., Shanak, S. and Kadan, S. (2017) Anti-Diabetes and Anti-Obesity Medicinal Plants and Phytochemicals. Springer International Publishing.
  25. Shulman, G. I. (2014) Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N. Engl. J. Med. 371, 1131-1141. https://doi.org/10.1056/NEJMra1011035
  26. Sone, H. and Kagawa, Y. (2005) Pancreatic beta cell senescence contributes to the pathogenesis of type 2 diabetes in high-fat dietinduced diabetic mice. Diabetologia 48, 58-67. https://doi.org/10.1007/s00125-004-1605-2
  27. Tahrani, A. A., Barnett, A. H. and Bailey, C. J. (2016) Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus. Nat. Rev. Endocrinol. 12, 566-592. https://doi.org/10.1038/nrendo.2016.86
  28. Tiano, J. P. and Mauvais-Jarvis, F. (2012) Importance of oestrogen receptors to preserve functional ${\beta}$-cell mass in diabetes. Nat. Rev. Endocrinol. 8, 342-351. https://doi.org/10.1038/nrendo.2011.242
  29. Voroneanu, L., Nistor, I., Dumea, R., Apetrii, M. and Covic, A. (2016) Silymarin in type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. J. Diabetes Res. 2016, 5147468.
  30. Wang, Q., Liu, M., Liu, W. W., Hao, W. B., Tashiro, S., Onodera, S. and Ikejima, T. (2012) In vivo recovery effect of silibinin treatment on streptozotocin-induced diabetic mice is associated with the modulations of sirt-1 expression and autophagy in pancreatic beta-cell. J. Asian Nat. Prod. Res. 14, 413-423. https://doi.org/10.1080/10286020.2012.657180
  31. Wu, J., Williams, D., Walter, G. A., Thompson, W. E. and Sidell, N. (2014) Estrogen increases Nrf2 activity through activation of the PI3K pathway in MCF-7 breast cancer cells. Exp. Cell Res. 328, 351-360. https://doi.org/10.1016/j.yexcr.2014.08.030
  32. Xu, F., Yang, J., Negishi, H., Sun, Y., Li, D., Zhang, X., Hayashi, T., Gao, M., Ikeda, K. and Ikejima, T. (2018) Silibinin decreases hepatic glucose production through the activation of gut-brain-liver axis in diabetic rats. Food Funct. 9, 4926-4935. https://doi.org/10.1039/C8FO00565F
  33. Yang, D. K. and Kang, H. S. (2018) Anti-diabetic effect of cotreatment with quercetin and resveratrol in streptozotocin-induced diabetic rats. Biomol. Ther. (Seoul) 26, 130-138. https://doi.org/10.4062/biomolther.2017.254
  34. Yang, J., Sun, Y., Xu, F., Liu, W., Hayashi, T., Onodera, S., Tashiro, S. I. and Ikejima, T. (2018) Involvement of estrogen receptors in silibinin protection of pancreatic ${\beta}$-cells from $TNF{\alpha}$- or IL-$1{\beta}$-induced cytotoxicity. Biomed. Pharmacother. 102, 344-353. https://doi.org/10.1016/j.biopha.2018.01.128
  35. Zhang, T., Liang, X., Shi, L., Wang, L., Chen, J., Kang, C., Zhu, J. and Mi, M. (2013) Estrogen receptor and PI3K/Akt signaling pathway involvement in S-(-)equol-induced activation of Nrf2/ARE in endothelial cells. PLoS ONE 8, e79075. https://doi.org/10.1371/journal.pone.0079075
  36. Zheng, N., Zhang, P., Huang, H., Liu, W., Hayashi, T., Zang, L., Zhang, Y., Liu, L., Xia, M., Tashiro, S.-I., Onodera, S. and Ikejima, T. (2015) $ER{\alpha}$ down-regulation plays a key role in silibinin-induced autophagy and apoptosis in human breast cancer MCF-7 cells. J. Pharmacol. Sci. 128, 97-107. https://doi.org/10.1016/j.jphs.2015.05.001
  37. Zou, H., Zhu, X. X., Zhang, G. B., Ma, Y., Wu, Y. and Huang, D. S. (2017) Silibinin: an old drug for hematological disorders. Oncotarget 8, 89307-89314. https://doi.org/10.18632/oncotarget.19153

Cited by

  1. Synergistic Induction of Apoptosis by the Combination of an Axl Inhibitor and Auranofin in Human Breast Cancer Cells vol.28, pp.5, 2020, https://doi.org/10.4062/biomolther.2020.051
  2. Natural Nrf2 Activators from Juices, Wines, Coffee, and Cocoa vol.6, pp.4, 2020, https://doi.org/10.3390/beverages6040068
  3. The Role of Oxidative Stress in Pancreatic β Cell Dysfunction in Diabetes vol.22, pp.4, 2021, https://doi.org/10.3390/ijms22041509
  4. Natural Polyphenols in Metabolic Syndrome: Protective Mechanisms and Clinical Applications vol.22, pp.11, 2021, https://doi.org/10.3390/ijms22116110
  5. Bisphenol A and genistein have opposite effects on adult chicken ovary by acting on ERα/Nrf2-Keap1-signaling pathway vol.347, 2020, https://doi.org/10.1016/j.cbi.2021.109616