DOI QR코드

DOI QR Code

PEGylated Erythropoietin Protects against Brain Injury in the MCAO-Induced Stroke Model by Blocking NF-κB Activation

  • Im, Jun Hyung (College of Pharmacy and Medical Research Center, Chungbuk National University) ;
  • Yeo, In Jun (College of Pharmacy and Medical Research Center, Chungbuk National University) ;
  • Hwang, Chul Ju (College of Pharmacy and Medical Research Center, Chungbuk National University) ;
  • Lee, Kyung Sun (R&D Center, Ts Corporation) ;
  • Hong, Jin Tae (College of Pharmacy and Medical Research Center, Chungbuk National University)
  • Received : 2019.09.09
  • Accepted : 2019.10.28
  • Published : 2020.03.01

Abstract

Cerebral ischemia exhibits a multiplicity of pathophysiological mechanisms. During ischemic stroke, the reactive oxygen species (ROS) concentration rises to a peak during reperfusion, possibly underlying neuronal death. Recombinant human erythropoietin (EPO) supplementation is one method of treating neurodegenerative disease by reducing the generation of ROS. We investigated the therapeutic effect of PEGylated EPO (P-EPO) on ischemic stroke. Mice were administered P-EPO (5,000 U/kg) via intravenous injection, and middle cerebral artery occlusion (MCAO) followed by reperfusion was performed to induce in vivo ischemic stroke. P-EPO ameliorated MCAO-induced neurological deficit and reduced behavioral disorder and the infarct area. Moreover, lipid peroxidation, expression of inflammatory proteins (cyclooxygenase-2 and inducible nitric oxide synthase), and cytokine levels in blood were reduced by the P-EPO treatment. In addition, higher activation of nuclear factor kappa B (NF-κB) was found in the brain after MCAO, but NF-κB activation was reduced in the P-EPO-injected group. Treatment with the NF-κB inhibitor PS-1145 (5 mg/kg) abolished the P-EPO-induced reduction of infarct volume, neuronal death, neuroinflammation, and oxidative stress. Moreover, P-EPO was more effective than EPO (5,000 U/kg) and similar to a tissue plasminogen activator (10 mg/kg). An in vitro study revealed that P-EPO (25, 50, and 100 U/mL) treatment protected against rotenone (100 nM)-induced neuronal loss, neuroinflammation, oxidative stress, and NF-κB activity. These results indicate that the administration of P-EPO exerted neuroprotective effects on cerebral ischemia damage through anti-oxidant and anti-inflammatory properties by inhibiting NF-κB activation.

Keywords

References

  1. Abed, H. S., Al-Ghobashy, M. A., Fathalla, F. A. and Salem, M. Y. (2017) Evaluation of the combined effects of pegylation and glycosylation on the stability of erythropoietin using a stability-indicating SE-HPLC. Biologicals 50, 129-136. https://doi.org/10.1016/j.biologicals.2017.08.012
  2. Abramov, A. Y., Scorziello, A. and Duchen, M. R. (2007) Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J. Neurosci. 27, 1129-1138. https://doi.org/10.1523/JNEUROSCI.4468-06.2007
  3. Ahmadiasl, N., Banaei, S. and Alihemmati, A. (2013) Combination antioxidant effect of erythropoietin and melatonin on renal ischemiareperfusion injury in rats. Iran. J. Basic Med. Sci. 16, 1209-1216.
  4. Allen, C. L. and Bayraktutan, U. (2009) Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int. J. Stroke 4, 461-470. https://doi.org/10.1111/j.1747-4949.2009.00387.x
  5. Bailey, D. M., Lundby, C., Berg, R. M., Taudorf, S., Rahmouni, H., Gutowski, M., Mulholland, C. W., Sullivan, J. L., Swenson, E. R., McEneny, J., Young, I. S., Pedersen, B. K., Moller, K., Pietri, S. and Culcasi, M. (2014) On the antioxidant properties of erythropoietin and its association with the oxidative-nitrosative stress response to hypoxia in humans. Acta Physiol. (Oxf.) 212, 175-187. https://doi.org/10.1111/apha.12313
  6. Bennett, D. A., Krishnamurthi, R. V., Barker-Collo, S., Forouzanfar, M. H., Naghavi, M., Connor, M., Lawes, C. M., Moran, A. E., Anderson, L. M. and Roth, G. A. (2014) The global burden of ischemic stroke: findings of the GBD 2010 study. Global Heart 9, 107-112. https://doi.org/10.1016/j.gheart.2014.01.001
  7. Berrouschot, J., Stoll, A., Hogh, T. and Eschenfelder, C. C. (2016) Intravenous thrombolysis with recombinant tissue-type plasminogen activator in a stroke patient receiving dabigatran anticoagulant after antagonization with idarucizumab. Stroke 47, 1936-1938. https://doi.org/10.1161/STROKEAHA.116.013550
  8. Bonda, D. J., Wang, X., Perry, G., Nunomura, A., Tabaton, M., Zhu, X. and Smith, M. A. (2010) Oxidative stress in Alzheimer disease: a possibility for prevention. Neuropharmacology 59, 290-294. https://doi.org/10.1016/j.neuropharm.2010.04.005
  9. Bonifacio, E., Ziegler, A. G., Klingensmith, G., Schober, E., Bingley, P. J., Rottenkolber, M., Theil, A., Eugster, A., Puff, R., Peplow, C., Buettner, F., Lange, K., Hasford, J. and Achenbach, P.; Pre-POINT Study Group (2015) Effects of high-dose oral insulin on immune responses in children at high risk for type 1 diabetes: the Pre-POINT randomized clinical trial. JAMA 313, 1541-1549. https://doi.org/10.1001/jama.2015.2928
  10. Brines, M., Grasso, G., Fiordaliso, F., Sfacteria, A., Ghezzi, P., Fratelli, M., Latini, R., Xie, Q. W., Smart, J., Su-Rick, C. J., Pobre, E., Diaz, D., Gomez, D., Hand, C., Coleman, T. and Cerami, A. (2004) Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor. Proc. Natl. Acad. Sci. U.S.A. 101, 14907-14912. https://doi.org/10.1073/pnas.0406491101
  11. Campbell, S. J., Anthony, D. C., Oakley, F., Carlsen, H., Elsharkawy, A. M., Blomhoff, R. and Mann, D. A. (2008) Hepatic nuclear factor kappa B regulates neutrophil recruitment to the injured brain. J. Neuropathol. Exp. Neurol. 67, 223-230. https://doi.org/10.1097/NEN.0b013e3181654957
  12. Cevik, B., Solmaz, V., Yigitturk, G., Cavusoglu, T., Peker, G. and Erbas, O. (2017) Neuroprotective effects of erythropoietin on Alzheimer's dementia model in rats. Adv. Clin. Exp. Med. 26, 23-29. https://doi.org/10.17219/acem/61044
  13. Chen, J., Yang, Z. and Zhang, X. (2015) Carbamylated erythropoietin: a prospective drug candidate for neuroprotection. Biochem. Insights 8, 25-29.
  14. Crack, P. J., Taylor, J. M., Ali, U., Mansell, A. and Hertzog, P. J. (2006) Potential contribution of NF-kappaB in neuronal cell death in the glutathione peroxidase-1 knockout mouse in response to ischemiareperfusion injury. Stroke 37, 1533-1538. https://doi.org/10.1161/01.STR.0000221708.17159.64
  15. Digicaylioglu, M., Bichet, S., Marti, H. H., Wenger, R. H., Rivas, L. A., Bauer, C. and Gassmann, M. (1995) Localization of specific erythropoietin binding sites in defined areas of the mouse brain. Proc. Natl. Acad. Sci. U.S.A. 92, 3717-3720. https://doi.org/10.1073/pnas.92.9.3717
  16. Duckworth, E. A., Butler, T., Collier, L., Collier, S. and Pennypacker, K. R. (2006) NF-kappaB protects neurons from ischemic injury after middle cerebral artery occlusion in mice. Brain Res. 1088, 167-175. https://doi.org/10.1016/j.brainres.2006.02.103
  17. Dumont, M. and Beal, M. F. (2011) Neuroprotective strategies involving ROS in Alzheimer disease. Free Radic. Biol. Med. 51, 1014-1026. https://doi.org/10.1016/j.freeradbiomed.2010.11.026
  18. Erbas, O., Cinar, B. P., Solmaz, V., Cavusoglu, T. and Ates, U. (2015) The neuroprotective effect of erythropoietin on experimental Parkinson model in rats. Neuropeptides 49, 1-5. https://doi.org/10.1016/j.npep.2014.10.003
  19. Erbayraktar, S., Yilmaz, O., Gokmen, N. and Brines, M. (2003) Erythropoietin is a multifunctional tissue-protective cytokine. Curr. Hematol. Rep. 2, 465-470.
  20. Gong, G., Xiang, L., Yuan, L., Hu, L., Wu, W., Cai, L., Yin, L. and Dong, H. (2014) Protective effect of glycyrrhizin, a direct HMGB1 inhibitor, on focal cerebral ischemia/reperfusion-induced inflammation, oxidative stress, and apoptosis in rats. PLoS ONE 9, e89450. https://doi.org/10.1371/journal.pone.0089450
  21. Gorio, A., Gokmen, N., Erbayraktar, S., Yilmaz, O., Madaschi, L., Cichetti, C., Di Giulio, A. M., Vardar, E., Cerami, A. and Brines, M. (2002) Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc. Natl. Acad. Sci. U.S.A. 99, 9450-9455. https://doi.org/10.1073/pnas.142287899
  22. Gorio, A., Madaschi, L., Di Stefano, B., Carelli, S., Di Giulio, A. M., De Biasi, S., Coleman, T., Cerami, A. and Brines, M. (2005) Methylprednisolone neutralizes the beneficial effects of erythropoietin in experimental spinal cord injury. Proc. Natl. Acad. Sci. U.S.A. 102, 16379-16384. https://doi.org/10.1073/pnas.0508479102
  23. Grasso, G., Sfacteria, A., Cerami, A. and Brines, M. (2004) Erythropoietin as a tissue-protective cytokine in brain injury: what do we know and where do we go? Neuroscientist 10, 93-98. https://doi.org/10.1177/1073858403259187
  24. Gui, D., Li, Y., Chen, X., Gao, D., Yang, Y. and Li, X. (2015) HIF1 signaling pathway involving iNOS, COX2 and caspase9 mediates the neuroprotection provided by erythropoietin in the retina of chronic ocular hypertension rats. Mol. Med. Rep. 11, 1490-1496. https://doi.org/10.3892/mmr.2014.2859
  25. Ham, P. B., 3rd and Raju, R. (2017) Mitochondrial function in hypoxic ischemic injury and influence of aging. Prog. Neurobiol. 157, 92-116. https://doi.org/10.1016/j.pneurobio.2016.06.006
  26. Heikal, L., Ghezzi, P., Mengozzi, M., Stelmaszczuk, B., Feelisch, M. and Ferns, G. A. (2016) Erythropoietin and a nonerythropoietic peptide analog promote aortic endothelial cell repair under hypoxic conditions: role of nitric oxide. Hypoxia 4, 121-133. https://doi.org/10.2147/HP.S104377
  27. Hosoo, H., Marushima, A., Nagasaki, Y., Hirayama, A., Ito, H., Puentes, S., Mujagic, A., Tsurushima, H., Tsuruta, W., Suzuki, K., Matsui, H., Matsumaru, Y., Yamamoto, T. and Matsumura, A. (2017) Neurovascular unit protection from cerebral ischemia-reperfusion injury by radical-containing nanoparticles in mice. Stroke 48, 2238-2247. https://doi.org/10.1161/STROKEAHA.116.016356
  28. Hu, H., Zhu, X., Lin, R., Li, Z. and Chen, L. (2016) Suppressive effects of Gua Lou Gui Zhi decoction on MCAO-induced NO and PGE2 production are dependent on the MAPK and NF-kappaB signaling pathways. Mol. Med. Rep. 14, 5141-5147. https://doi.org/10.3892/mmr.2016.5876
  29. Jelkmann, W. (2011) Regulation of erythropoietin production. J. Physiol. 589, 1251-1258. https://doi.org/10.1113/jphysiol.2010.195057
  30. Jickling, G. C., Zhan, X., Stamova, B., Ander, B. P., Tian, Y., Liu, D., Sison, S. M., Verro, P., Johnston, S. C. and Sharp, F. R. (2012) Ischemic transient neurological events identified by immune response to cerebral ischemia. Stroke 43, 1006-1012. https://doi.org/10.1161/STROKEAHA.111.638577
  31. Kim, S. M., Song, J., Kim, S., Han, C., Park, M. H., Koh, Y., Jo, S. A. and Kim, Y. Y. (2011) Identification of peripheral inflammatory markers between normal control and Alzheimer's disease. BMC Neurol. 11, 51. https://doi.org/10.1186/1471-2377-11-51
  32. Kraft, A. D. and Harry, G. J. (2011) Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity. Int. J. Environ. Res. Public Health 8, 2980-3018. https://doi.org/10.3390/ijerph8072980
  33. Li, Y. P., Yang, G. J., Jin, L., Yang, H. M., Chen, J., Chai, G. S. and Wang, L. (2015) Erythropoietin attenuates Alzheimer-like memory impairments and pathological changes induced by amyloid beta42 in mice. Brain Res. 1618, 159-167. https://doi.org/10.1016/j.brainres.2015.05.031
  34. Liu, C., Weaver, J. and Liu, K. J. (2012) Rapid conditioning with oxygen oscillation: neuroprotection by intermittent normobaric hyperoxia after transient focal cerebral ischemia in rats. Stroke 43, 220-226. https://doi.org/10.1161/STROKEAHA.111.625756
  35. Liu, S., Feng, X., Jin, R. and Li, G. (2018) Tissue plasminogen activator-based nanothrombolysis for ischemic stroke. Expert Opin. Drug Deliv. 15, 173-184. https://doi.org/10.1080/17425247.2018.1384464
  36. Longa, E. Z., Weinstein, P. R., Carlson, S. and Cummins, R. (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20, 84-91. https://doi.org/10.1161/01.STR.20.1.84
  37. Marti, H. H. (2004) Erythropoietin and the hypoxic brain. J .Exp. Biol. 207, 3233-3242. https://doi.org/10.1242/jeb.01049
  38. Masuda, S., Nagao, M., Takahata, K., Konishi, Y., Gallyas, F., Jr., Tabira, T. and Sasaki, R. (1993) Functional erythropoietin receptor of the cells with neural characteristics. Comparison with receptor properties of erythroid cells. J. Biol. Chem. 268, 11208-11216. https://doi.org/10.1016/S0021-9258(18)82112-3
  39. Mestriner, R. G., Miguel, P. M., Bagatini, P. B., Saur, L., Boisserand, L. S., Baptista, P. P., Xavier, L. L. and Netto, C. A. (2013) Behavior outcome after ischemic and hemorrhagic stroke, with similar brain damage, in rats. Behav. Brain Res. 244, 82-89. https://doi.org/10.1016/j.bbr.2013.02.001
  40. Mrsic-Pelcic, J., Pilipovic, K., Pelcic, G., Vitezic, D. and Zupan, G. (2017) Decrease in oxidative stress parameters after post-ischaemic recombinant human erythropoietin administration in the hippocampus of rats exposed to focal cerebral ischaemia. Basic Clin. Pharmacol. Toxicol. 121, 453-464. https://doi.org/10.1111/bcpt.12833
  41. Nijboer, C. H., Heijnen, C. J., Groenendaal, F., May, M. J., van Bel, F. and Kavelaars, A. (2008) A dual role of the NF-kappaB pathway in neonatal hypoxic-ischemic brain damage. Stroke 39, 2578-2586. https://doi.org/10.1161/STROKEAHA.108.516401
  42. Pang, L., Zhang, N., Dong, N., Wang, D. W., Xu, D. H., Zhang, P. and Meng, X. W. (2016) Erythropoietin protects rat brain injury from carbon monoxide poisoning by inhibiting toll-like receptor 4/NF-kappa B-dependent inflammatory responses. Inflammation 39, 561-568. https://doi.org/10.1007/s10753-015-0280-4
  43. Pasut, G. and Veronese, F. M. (2012) State of the art in PEGylation: the great versatility achieved after forty years of research. J. Control. Release 161, 461-472. https://doi.org/10.1016/j.jconrel.2011.10.037
  44. Qin, Y. Y., Li, M., Feng, X., Wang, J., Cao, L., Shen, X. K., Chen, J., Sun, M., Sheng, R., Han, F. and Qin, Z. H. (2017) Combined NADPH and the NOX inhibitor apocynin provides greater anti-inflammatory and neuroprotective effects in a mouse model of stroke. Free Radic. Biol. Med. 104, 333-345. https://doi.org/10.1016/j.freeradbiomed.2017.01.034
  45. Ranjbaran, M., Kadkhodaee, M. and Seifi, B. (2017) Renal tissue proinflammatory gene expression is reduced by erythropoietin in rats subjected to hemorrhagic shock. J. Nephropathol. 6, 69-73. https://doi.org/10.15171/jnp.2017.12
  46. Rocchetta, F., Solini, S., Mister, M., Mele, C., Cassis, P., Noris, M., Remuzzi, G. and Aiello, S. (2011) Erythropoietin enhances immunostimulatory properties of immature dendritic cells. Clin. Exp. Immunol. 165, 202-210. https://doi.org/10.1111/j.1365-2249.2011.04417.x
  47. Sharawy, N., Rashed, L. and Youakim, M. F. (2015) Evaluation of multineuroprotective effects of erythropoietin using cisplatin induced peripheral neurotoxicity model. Exp. Toxicol. Pathol. 67, 315-322. https://doi.org/10.1016/j.etp.2015.02.003
  48. Simmons, L. J., Surles-Zeigler, M. C., Li, Y., Ford, G. D., Newman, G. D. and Ford, B. D. (2016) Regulation of inflammatory responses by neuregulin-1 in brain ischemia and microglial cells in vitro involves the NF-kappa B pathway. J. Neuroinflammation 13, 237. https://doi.org/10.1186/s12974-016-0703-7
  49. Subiros, N., Del Barco, D. G. and Coro-Antich, R. M. (2012) Erythropoietin: still on the neuroprotection road. Ther. Adv. Neurol. Disord. 5, 161-173. https://doi.org/10.1177/1756285611434926
  50. van Rijt, W. G., van Goor, H., Ploeg, R. J. and Leuvenink, H. G. (2014) Erythropoietin-mediated protection in kidney transplantation: nonerythropoietic EPO derivatives improve function without increasing risk of cardiovascular events. Transpl. Int. 27, 241-248. https://doi.org/10.1111/tri.12174
  51. Wang, F. J., Wang, S. X., Chai, L. J., Zhang, Y., Guo, H. and Hu, L. M. (2018) Xueshuantong injection (lyophilized) combined with salvianolate lyophilized injection protects against focal cerebral ischemia/reperfusion injury in rats through attenuation of oxidative stress. Acta Pharmacol. Sin. 39, 998-1011. https://doi.org/10.1038/aps.2017.128
  52. Wang, R., Li, J., Duan, Y., Tao, Z., Zhao, H. and Luo, Y. (2017) Effects of erythropoietin on gliogenesis during cerebral ischemic/reperfusion recovery in adult mice. Aging Dis. 8, 410-419. https://doi.org/10.14336/AD.2016.1209
  53. Wang, T., Zhai, L., Zhang, H., Zhao, L. and Guo, Y. (2015) Picroside II inhibits the MEK-ERK1/2-COX2 signal pathway to prevent cerebral ischemic injury in rats. J. Mol. Neurosci. 57, 335-351. https://doi.org/10.1007/s12031-015-0623-5
  54. Wang, T. F., Lei, Z., Li, Y. X., Wang, Y. S., Wang, J., Wang, S. J., Hao, Y. J., Zhou, R., Jin, S. J., Du, J., Li, J., Sun, T. and Yu, J. Q. (2013) Oxysophoridine protects against focal cerebral ischemic injury by inhibiting oxidative stress and apoptosis in mice. Neurochem. Res. 38, 2408-2417. https://doi.org/10.1007/s11064-013-1153-6
  55. Yazihan, N., Uzuner, K., Salman, B., Vural, M., Koken, T. and Arslantas, A. (2008) Erythropoietin improves oxidative stress following spinal cord trauma in rats. Injury 39, 1408-1413. https://doi.org/10.1016/j.injury.2008.03.010
  56. Yoo, S. J., Cho, B., Lee, D., Son, G., Lee, Y. B., Soo Han, H., Kim, E., Moon, C. and Moon, C. (2017) The erythropoietin-derived peptide MK-X and erythropoietin have neuroprotective effects against ischemic brain damage. Cell Death Dis. 8, e3003. https://doi.org/10.1038/cddis.2017.381
  57. Zamani, M., Katebi, M., Mehdizadeh, M., Kafami, L. and Soleimani, M. (2013) Combination therapy with A1 receptor agonist and vitamin C improved working memory in a mouse model of global ischemiareperfusion. Basic Clin. Neurosci. 4, 111-116.
  58. Zhang, R. Q., Li, D. Y., Xu, T. D., Zhu, S. S., Pan, H. J., Fang, F., Wu, X. and Sun, H. (2017a) Antioxidative effect of luteolin pretreatment on simulated ischemia/reperfusion injury in cardiomyocyte and perfused rat heart. Chin. J. Integr. Med. 23, 518-527. https://doi.org/10.1007/s11655-015-2296-x
  59. Zhang, Y., Yan, Y., Cao, Y., Yang, Y., Zhao, Q., Jing, R., Hu, J. and Bao, J. (2017b) Potential therapeutic and protective effect of curcumin against stroke in the male albino stroke-induced model rats. Life Sci. 183, 45-49. https://doi.org/10.1016/j.lfs.2017.06.023
  60. Zhu, J., Jiang, Y., Wu, L., Lu, T., Xu, G. and Liu, X. (2012) Suppression of local inflammation contributes to the neuroprotective effect of ginsenoside Rb1 in rats with cerebral ischemia. Neuroscience 202, 342-351. https://doi.org/10.1016/j.neuroscience.2011.11.070

Cited by

  1. Insights into Potential Targets for Therapeutic Intervention in Epilepsy vol.21, pp.22, 2020, https://doi.org/10.3390/ijms21228573
  2. Hypoxia, Oxidative Stress, and Inflammation: Three Faces of Neurodegenerative Diseases vol.82, pp.suppl1, 2020, https://doi.org/10.3233/jad-201074