DOI QR코드

DOI QR Code

PBT-6, a Novel PI3KC2γ Inhibitor in Rheumatoid Arthritis

  • Kim, Juyoung (Department of Medicine, College of Medicine, Inha University) ;
  • Jung, Kyung Hee (Department of Medicine, College of Medicine, Inha University) ;
  • Yoo, Jaeho (School of Pharmacy, Sungkyunkwan University) ;
  • Park, Jung Hee (Department of Medicine, College of Medicine, Inha University) ;
  • Yan, Hong Hua (Department of Medicine, College of Medicine, Inha University) ;
  • Fang, Zhenghuan (Department of Medicine, College of Medicine, Inha University) ;
  • Lim, Joo Han (Department of Medicine, College of Medicine, Inha University) ;
  • Kwon, Seong-Ryul (Department of Medicine, College of Medicine, Inha University) ;
  • Kim, Myung Ku (Department of Medicine, College of Medicine, Inha University) ;
  • Park, Hyun-Ju (School of Pharmacy, Sungkyunkwan University) ;
  • Hong, Soon-Sun (Department of Medicine, College of Medicine, Inha University)
  • Received : 2019.09.18
  • Accepted : 2019.10.17
  • Published : 2020.03.01

Abstract

Phosphoinositide 3-kinase (PI3K) is considered as a promising therapeutic target for rheumatoid arthritis (RA) because of its involvement in inflammatory processes. However, limited studies have reported the involvement of PI3KC2γ in RA, and the underlying mechanism remains largely unknown. Therefore, we investigated the role of PI3KC2γ as a novel therapeutic target for RA and the effect of its selective inhibitor, PBT-6. In this study, we observed that PI3KC2γ was markedly increased in the synovial fluid and tissue as well as the PBMCs of patients with RA. PBT-6, a novel PI3KC2γ inhibitor, decreased the cell growth of TNF-mediated synovial fibroblasts and LPS-mediated macrophages. Furthermore, PBT-6 inhibited the PI3KC2γ expression and PI3K/AKT signaling pathway in both synovial fibroblasts and macrophages. In addition, PBT-6 suppressed macrophage migration via CCL2 and osteoclastogenesis. In CIA mice, it significantly inhibited the progression and development of RA by decreasing arthritis scores and paw swelling. Three-dimensional micro-computed tomography confirmed that PBT-6 enhanced the joint structures in CIA mice. Taken together, our findings suggest that PI3KC2γ is a therapeutic target for RA, and PBT-6 could be developed as a novel PI3KC2γ inhibitor to target inflammatory diseases including RA.

Keywords

References

  1. Asagiri, M., Sato, K., Usami, T., Ochi, S., Nishina, H., Yoshida, H., Morita, I., Wagner, E. F., Mak, T. W., Serfling, E. and Takayanagi, H. (2005) Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J. Exp. Med. 202, 1261-1269. https://doi.org/10.1084/jem.20051150
  2. Bottini, N. and Firestein, G. S. (2013) Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat. Rev. Rheumatol. 9, 24-33. https://doi.org/10.1038/nrrheum.2012.190
  3. Boyle, D. L., Kim, H. R., Topolewskim, K., Bartok, B. and Firestein, G. S. (2014) Novel phosphoinositide 3-kinase ${\delta},{\gamma}$ inhibitor: potent antiinflammatory effects and joint protection in models of rheumatoid arthritis. J. Pharmacol. Exp. Ther. 348, 271-280. https://doi.org/10.1124/jpet.113.205955
  4. Braccini, L., Ciraolo, E., Campa, C. C., Perino, A., Longo, D. L., Tibolla, G., Pregnolato, M., Cao, Y., Tassone, B., Damilano, F., Laffargue, M., Calautti, E., Falasca, M., Norata, G. D., Backer, J. M. and Hirsch, E. (2015) PI3K-C2gamma is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling. Nat. Commun. 6, 7400. https://doi.org/10.1038/ncomms8400
  5. Brennan, F. M., Maini, R. N. and Feldmann, M. (1998) Role of proinflammatory cytokines in rheumatoid arthritis. Springer Semin. Immunopathol. 20, 133-147. https://doi.org/10.1007/BF00832003
  6. Burmester, G. R., Stuhlmuller, B., Keyszer, G. and Kinne, R. W. (1997) Mononuclear phagocytes and rheumatoid synovitis. Mastermind or workhorse in arthritis? Arthritis Rheum. 40, 5-18. https://doi.org/10.1002/art.1780400104
  7. Camps, M., Ruckle, T., Ji, H., Ardissone, V., Rintelen, F., Shaw, J., Ferrandi, C., Chabert, C., Gillieron, C., Francon, B., Martin, T., Gretener, D., Perrin, D., Leroy, D., Vitte, P. A., Hirsch, E., Wymann, M. P., Cirillo, R., Schwarz, M. K. and Rommel, C. (2005) Blockade of PI3Kgamma suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nat. Med. 11, 936-943. https://doi.org/10.1038/nm1284
  8. Clavel, C., Ceccato, L., Anquetil, F., Serre, G. and Sebbag, M. (2016) Among human macrophages polarised to different phenotypes, the M-CSF-oriented cells present the highest pro-inflammatory response to the rheumatoid arthritis-specific immune complexes containing ACPA. Ann. Rheum. Dis. 75, 2184-2191. https://doi.org/10.1136/annrheumdis-2015-208887
  9. Curtis, M. J., Bond, R. A., Spina, D., Ahluwalia, A., Alexander, S. P., Giembycz, M. A., Gilchrist, A., Hoyer, D., Insel, P. A., Izzo, A. A., Lawrence, A. J., MacEwan, D. J., Moon, L. D., Wonnacott, S., Weston, A. H. and McGrath, J. C. (2015) Experimental design and analysis and their reporting: new guidance for publication in BJP. Br. J. Pharmacol. 172, 3461-3471. https://doi.org/10.1111/bph.12856
  10. Del Prete, A., Vermi, W., Dander, E., Otero, K., Barberis, L., Luini, W., Bernasconi, S., Sironi, M., Santoro, A., Garlanda, C., Facchetti, F., Wymann, M. P., Vecchi, A., Hirsch, E., Mantovani, A. and Sozzani, S. (2004) Defective dendritic cell migration and activation of adaptive immunity in PI3Kgamma-deficient mice. EMBO J. 23, 3505-3515. https://doi.org/10.1038/sj.emboj.7600361
  11. Divecha, N. and Irvine, R. F. (1995) Phospholipid signaling. Cell 80, 269-278. https://doi.org/10.1016/0092-8674(95)90409-3
  12. Foster, F. M., Traer, C. J., Abraham, S. M. and Fry, M. J. (2003) The phosphoinositide (PI) 3-kinase family. J. Cell Sci. 116, 3037-3040. https://doi.org/10.1242/jcs.00609
  13. Freitag, A., Prajwal, P., Shymanets, A., Harteneck, C., Nurnberg, B., Schachtele, C., Kubbutat, M., Totzke, F. and Laufer, S. A. (2015) Development of first lead structures for phosphoinositide 3-kinase-C2gamma inhibitors. J. Med. Chem. 58, 212-221. https://doi.org/10.1021/jm5006034
  14. Frisell, T., Baecklund, E., Bengtsson, K., Di Giuseppe, D., Forsbladd'Elia, H. and Askling, J.; ARTIS Study group (2018) Patient characteristics influence the choice of biological drug in RA, and will make non-TNFi biologics appear more harmful than TNFi biologics. Ann. Rheum. Dis. 77, 650-657. https://doi.org/10.1136/annrheumdis-2017-212395
  15. Gillespie, J., Savic, S., Wong, C., Hempshall, A., Inman, M., Emery, P., Grigg, R. and McDermott, M. F. (2012) Histone deacetylases are dysregulated in rheumatoid arthritis and a novel histone deacetylase 3-selective inhibitor reduces interleukin-6 production by peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Rheum. 64, 418-422. https://doi.org/10.1002/art.33382
  16. Haringman, J. J., Gerlag, D. M., Zwinderman, A. H., Smeets, T. J., Kraan, M. C., Baeten, D., McInnes, I. B., Bresnihan, B. and Tak, P. P. (2005) Synovial tissue macrophages: a sensitive biomarker for response to treatment in patients with rheumatoid arthritis. Ann. Rheum. Dis. 64, 834-838. https://doi.org/10.1136/ard.2004.029751
  17. Harris, S. J., Foster, J. G. and Ward, S. G. (2009) PI3K isoforms as drug targets in inflammatory diseases: lessons from pharmacological and genetic strategies. Curr. Opin. Investig. Drugs 10, 1151-1162.
  18. Hirsch, E., Katanaev, V. L., Garlanda, C., Azzolino, O., Pirola, L., Silengo, L., Sozzani, S., Mantovani, A., Altruda, F. and Wymann, M. P. (2000) Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science 287, 1049-1053. https://doi.org/10.1126/science.287.5455.1049
  19. Ho, L. K., Liu, D., Rozycka, M., Brown, R. A. and Fry, M. J. (1997) Identification of four novel human phosphoinositide 3-kinases defines a multi-isoform subfamily. Biochem. Biophys. Res. Commun. 235, 130-137. https://doi.org/10.1006/bbrc.1997.6747
  20. Hofbauer, L. C. and Heufelder, A. E. (2001) The role of osteoprotegerin and receptor activator of nuclear factor kappaB ligand in the pathogenesis and treatment of rheumatoid arthritis. Arthritis Rheum. 44, 253-259. https://doi.org/10.1002/1529-0131(200102)44:2<253::AID-ANR41>3.0.CO;2-S
  21. Huber, L. C., Distler, O., Tarner, I., Gay, R. E., Gay, S. and Pap, T. (2006) Synovial fibroblasts: key players in rheumatoid arthritis. Rheumatology (Oxford) 45, 669-675. https://doi.org/10.1093/rheumatology/kel065
  22. Iwamoto, T., Okamoto, H., Toyama, Y. and Momohara, S. (2008) Molecular aspects of rheumatoid arthritis: chemokines in the joints of patients. FEBS J. 275, 4448-4455. https://doi.org/10.1111/j.1742-4658.2008.06580.x
  23. Jia, Q., Cheng, W., Yue, Y., Hu, Y., Zhang, J., Pan, X., Xu, Z. and Zhang, P. (2015) Cucurbitacin E inhibits TNF-${\alpha}$-induced inflammatory cytokine production in human synoviocyte MH7A cells via suppression of PI3K/Akt/NF-${\kappa}B$ pathways. Int. Immunopharmacol. 29, 884-890. https://doi.org/10.1016/j.intimp.2015.08.026
  24. Jones, D. H., Kong, Y. Y. and Penninger, J. M. (2002) Role of RANKL and RANK in bone loss and arthritis. Ann. Rheum. Dis. 61 Suppl 2, ii32-ii39. https://doi.org/10.1136/ard.61.suppl_2.ii32
  25. Kapoor, M., Martel-Pelletier, J., Lajeunesse, D., Pelletier, J. P. and Fahmi, H. (2011) Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 7, 33-42. https://doi.org/10.1038/nrrheum.2010.196
  26. Katso, R., Okkenhaug, K., Ahmadi, K., White, S., Timms, J. and Waterfield, M. D. (2001) Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 17, 615-675. https://doi.org/10.1146/annurev.cellbio.17.1.615
  27. Kim, D. I., Kim, S. R., Kim, H. J., Lee, S. J., Lee, H. B., Park, S. J., Im, M. J. and Lee, Y. C. (2012) PI3K-${\gamma}$ inhibition ameliorates acute lung injury through regulation of $I{\kappa}B{\alpha}/NF$-${\kappa}B$ pathway and innate immune responses. J. Clin. Immunol. 32, 340-351. https://doi.org/10.1007/s10875-011-9628-1
  28. Koch, A. E., Kunkel, S. L., Harlow, L. A., Johnson, B., Evanoff, H. L., Haines, G. K., Burdick, M. D., Pope, R. M. and Strieter, R. M. (1992) Enhanced production of monocyte chemoattractant protein-1 in rheumatoid arthritis. J. Clin. Invest. 90, 772-779. https://doi.org/10.1172/JCI115950
  29. Li, Z., Jiang, H., Xie, W., Zhang, Z., Smrcka, A. V. and Wu, D. (2000) Roles of PLC-beta2 and -beta3 and PI3Kgamma in chemoattractant-mediated signal transduction. Science 287, 1046-1049. https://doi.org/10.1126/science.287.5455.1046
  30. Lloyd, G. and Deakin, H. G. (1975) Phobias complicating treatment of uterine carcinoma. Br. Med. J. 4, 440. https://doi.org/10.1136/bmj.4.5994.440
  31. McInnes, I. B. and Schett, G. (2007) Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429-442. https://doi.org/10.1038/nri2094
  32. McInnes, I. B. and Schett, G. (2011) The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205-2219. https://doi.org/10.1056/NEJMra1004965
  33. Min, D. J., Cho, M. L., Lee, S. H., Min, S. Y., Kim, W. U., Min, J. K., Park, S. H., Cho, C. S. and Kim, H. Y. (2004) Augmented production of chemokines by the interaction of type II collagen-reactive T cells with rheumatoid synovial fibroblasts. Arthritis Rheum. 50, 1146-1155. https://doi.org/10.1002/art.20133
  34. Mukaida, N., Mahe, Y. and Matsushima, K. (1990) Cooperative interaction of nuclear factor-kappa B- and cis-regulatory enhancer binding protein-like factor binding elements in activating the interleukin-8 gene by pro-inflammatory cytokines. J. Biol. Chem. 265, 21128-21133. https://doi.org/10.1016/S0021-9258(17)45336-1
  35. Mulherin, D., Fitzgerald, O. and Bresnihan, B. (1996) Synovial tissue macrophage populations and articular damage in rheumatoid arthritis. Arthritis Rheum. 39, 115-124. https://doi.org/10.1002/art.1780390116
  36. Nishimoto, N., Kishimoto, T. and Yoshizaki, K. (2000) Anti-interleukin 6 receptor antibody treatment in rheumatic disease. Ann. Rheum. Dis. 59 Suppl 1, i21-i27. https://doi.org/10.1136/ard.59.suppl_1.i21
  37. O'Farrell, F., Rustenm, T. E. and Stenmark, H. (2013) Phosphoinositide 3-kinases as accelerators and brakes of autophagy. FEBS J. 280, 6322-6337. https://doi.org/10.1111/febs.12486
  38. Pap, T. and Korb-Pap, A. (2015) Cartilage damage in osteoarthritis and rheumatoid arthritis--two unequal siblings. Nat. Rev. Rheumatol. 11, 606-615. https://doi.org/10.1038/nrrheum.2015.95
  39. Pirola, L., Zvelebil, M. J., Bulgarelli-Leva, G., Van Obberghen, E., Waterfield, M. D. and Wymann, M. P. (2001) Activation loop sequences confer substrate specificity to phosphoinositide 3-kinase alpha (PI3Kalpha). Functions of lipid kinase-deficient PI3Kalpha in signaling. J. Biol. Chem. 276, 21544-21554. https://doi.org/10.1074/jbc.M011330200
  40. Rasmussen, A. L., Wang, I. M., Shuhart, M. C., Proll, S. C., He, Y., Cristescu, R., Roberts, C., Carter, V. S., Williams, C. M., Diamond, D. L., Bryan, J. T., Ulrich, R., Korth, M. J., Thomassen, L. V. and Katze, M. G. (2012) Chronic immune activation is a distinguishing feature of liver and PBMC gene signatures from HCV/HIV coinfected patients and may contribute to hepatic fibrogenesis. Virology 430, 43-52. https://doi.org/10.1016/j.virol.2012.04.011
  41. Reddy, V. A. and Rao, N. A. (1976) Dihydrofolate reductase from soybean seedlings. Characterization of the enzyme purified by affinity chromatography. Arch. Biochem. Biophys. 174, 675-683. https://doi.org/10.1016/0003-9861(76)90398-2
  42. Romas, E., Gillespie, M. T. and Martin, T. J. (2002) Involvement of receptor activator of NFkappaB ligand and tumor necrosis factor-alpha in bone destruction in rheumatoid arthritis. Bone 30, 340-346. https://doi.org/10.1016/S8756-3282(01)00682-2
  43. Rommel, C., Camps, M. and Ji, H. (2007) PI3K delta and PI3K gamma: partners in crime in inflammation in rheumatoid arthritis and beyond? Nat. Rev. Immunol. 7, 191-201. https://doi.org/10.1038/nri2036
  44. Rosengren, S., Corr, M., Firestein, G. S. and Boyle, D. L. (2012) The JAK inhibitor CP-690,550 (tofacitinib) inhibits TNF-induced chemokine expression in fibroblast-like synoviocytes: autocrine role of type I interferon. Ann. Rheum. Dis. 71, 440-447. https://doi.org/10.1136/ard.2011.150284
  45. Tabas, I. (2010) Macrophage death and defective inflammation resolution in atherosclerosis. Nat. Rev. Immunol. 10, 36-46. https://doi.org/10.1038/nri2675
  46. Takayanagi, H., Iizuka, H., Juji, T., Nakagawa, T., Yamamoto, A., Miyazaki, T., Koshihara, Y., Oda, H., Nakamura, K. and Tanaka, S. (2000) Involvement of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum. 43, 259-269. https://doi.org/10.1002/1529-0131(200002)43:2<259::AID-ANR4>3.0.CO;2-W
  47. Udagawa, N. (2003) The mechanism of osteoclast differentiation from macrophages: possible roles of T lymphocytes in osteoclastogenesis. J. Bone Miner. Metab. 21, 337-343. https://doi.org/10.1007/s00774-003-0439-1
  48. Udalova, I. A., Mantovani, A. and Feldmann, M. (2016) Macrophage heterogeneity in the context of rheumatoid arthritis. Nat. Rev. Rheumatol. 12, 472-485. https://doi.org/10.1038/nrrheum.2016.91
  49. Vanhaesebroeck, B., Leevers, S. J., Panayotou, G. and Waterfield, M. D. (1997) Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem. Sci. 22, 267-272. https://doi.org/10.1016/S0968-0004(97)01061-X
  50. Vitale, R. F. and Ribeiro Fde, A. (2007) The role of tumor necrosis factor-alpha (TNF-alpha) in bone resorption present in middle ear cholesteatoma. Braz. J. Otorhinolaryngol. 73, 117-121. https://doi.org/10.1016/S1808-8694(15)31133-2
  51. Weitzmann, M. N., Cenci, S., Rifas, L., Brown, C. and Pacifici, R. (2000) Interleukin-7 stimulates osteoclast formation by up-regulating the T-cell production of soluble osteoclastogenic cytokines. Blood 96, 1873-1878. https://doi.org/10.1182/blood.V96.5.1873
  52. Wetzker, R. and Rommel, C. (2004) Phosphoinositide 3-kinases as targets for therapeutic intervention. Curr. Pharm. Des. 10, 1915-1922. https://doi.org/10.2174/1381612043384402
  53. Wymann, M. P. and Pirola, L. (1998) Structure and function of phosphoinositide 3-kinases. Biochim. Biophys. Acta 1436, 127-150. https://doi.org/10.1016/S0005-2760(98)00139-8
  54. Yokota, K., Sato, K., Miyazaki, T., Kitaura, H., Kayama, H., Miyoshi, F., Araki, Y., Akiyama, Y., Takeda, K. and Mimura, T. (2014) Combination of tumor necrosis factor ${\alpha}$ and interleukin-6 induces mouse osteoclast-like cells with bone resorption activity both in vitro and in vivo. Arthritis Rheumatol. 66, 121-129. https://doi.org/10.1002/art.38218
  55. Yu, J., Wjasow, C. and Backer, J. M. (1998) Regulation of the p85/p110alpha phosphatidylinositol 3'-kinase. Distinct roles for the n-terminal and c-terminal SH2 domains. J. Biol. Chem. 273, 30199-30203. https://doi.org/10.1074/jbc.273.46.30199
  56. Yu, W., Sun, X., Tang, H., Tao, Y. and Dai, Z. (2010) Inhibition of class II phosphoinositide 3-kinase gamma expression by p185(Bcr-Abl) contributes to impaired chemotaxis and aberrant homing of leukemic cells. Leuk. Lymphoma 51, 1098-1107. https://doi.org/10.3109/10428191003754624
  57. Zheng, Y., Sun, L., Jiang, T., Zhang, D., He, D. and Nie, H. (2014) TNF alpha promotes Th17 cell differentiation through IL-6 and IL-1beta produced by monocytes in rheumatoid arthritis. J. Immunol. Res. 2014, 385352. https://doi.org/10.1155/2014/385352

Cited by

  1. Recent advances on signaling pathways and their inhibitors in rheumatoid arthritis vol.230, 2021, https://doi.org/10.1016/j.clim.2021.108793
  2. The molecular mechanisms mediating class II PI 3‐kinase function in cell physiology vol.288, pp.24, 2020, https://doi.org/10.1111/febs.15692