DOI QR코드

DOI QR Code

Usefulness of Triglyceride and Glucose Index to Predict the Risk of Hyperuricemia in Korean Adults

한국 성인에서 고요산혈증 위험을 예측하기 위한 중성지방-혈당 지수의 유용성

  • Shin, Kyung-A (Dept. of Clinical Laboratory Science, Shinsung University) ;
  • Kim, Eun Jae (Dept. of Obstetrics and Gynecology, Seoul National University)
  • 신경아 (신성대학교 임상병리과) ;
  • 김은재 (서울대병원 의학연구혁신센터 산부인과)
  • Received : 2020.10.12
  • Accepted : 2020.12.20
  • Published : 2020.12.28

Abstract

The purpose of this study was to evaluate the usefulness of the triglyceride and glucose(TyG) index to predict the risk of hyperuricemia in Korean adults. This study included 14,266 men and 9,033 women over 20 years old who underwent health screenings from 2017 to 2019 at a general hospital in Seoul. To confirm the risk of hyperuricemia and predictive ability of the TyG index, logistic regression analysis and ROC curves were obtained. The accuracy of the TyG index for predicting hyperuricemia was 0.68, 0.61 for men and 0.67 for women(respectively p<0.001). The risk of hyperuricemia in the TyG index was 1.69 times higher in the fourth quartile than in the first quartile, 2.03 times higher in men and 2.07 times higher in women(respectively p<0.05). Thus the TyG index was not of high diagnostic usefulness as a screening test for hyperuricemia, but it was related to the TyG index and hyperuricemia.

본 연구는 한국 성인을 대상으로 고요산혈증 위험을 예측하기 위한 중성지방-혈당 지수(triglyceride and glucose index, TyG index)의 유용성을 평가하였다. 서울지역 종합병원에서 2017년부터 2019년까지 건강진단을 실시한 20세 이상 남성 14,266명, 여성 9,033명을 대상으로 하였다. TyG 지수에 따른 고요산혈증 발생 위험도는 로지스틱 회귀분석을 실시하였으며, TyG 지수의 고요산혈증 위험 예측능력을 확인하기 위해 ROC 곡선을 구하였다. 고요산혈증을 예측하기 위한 TyG 지수의 정확도는 0.68이며, 남성 0.61, 여성 0.67이었다(각각 p<0.001). TyG 지수의 고요산혈증 발생 위험은 1사분위수보다 4사분위수에서 1.69배 높았으며, 남성은 2.03배, 여성은 2.07배 높았다(각각 p<0.05). 따라서 TyG 지수는 고요산혈증의 선별검사로서 진단적 유용성은 높지 않았으나, TyG 지수와 고요산혈증간에는 관련이 있었다.

Keywords

References

  1. E. Krishnan. (2014). Interaction of inflammation, hyperuricemia, and the prevalence of hypertension among adults free of metabolic syndrome: NHANES 2009-2010. Journal of the American Heart Association, 3(2), e000157. DOI: 10.1161/JAHA.113.000157
  2. S. Kodama et al. (2009). Association between serum uric acid and development of type 2 diabetes. Diabetes Care, 32(9), 1737-1742. DOI: 10.2337/dc09-0288
  3. F. Cortese et al. (2019). Uric acid: from a biological advantage to a potential danger. A focus on cardiovascular effects. Vascular Pharmacology, 120, 106565. DOI: 10.1016/j.vph.2019.106565
  4. E. Krishnan, C. K. Kwoh, H. R. Schumacher & L. Kuller. (2007). Hyperuricemia and incidence of hypertension among men without metabolic syndrome. Hypertension, 49(2), 298-303. DOI: 10.1161/01.HYP.0000254480.64564.b6
  5. D. Grassi et al. (2013). Chronic hyperuricemia, uric acid deposit and cardiovascular risk. Current Pharmaceutical Design, 19(13), 2432-2438. DOI: 10.2174/1381612811319130011
  6. U. M. Khosla et al. (2005). Hyperuricemia induces endothelial dysfunction. Kidney International, 67(5), 1739-1742. DOI: 10.1111/j.1523-1755.2005.00273.x
  7. D. Roy, M. Perreault & A. Marette. (1998). Insulin stimulation of glucose uptake in skeletal muscles and adipose tissues in vivo is NO dependent. American Journal of Physiology, 274(4), E692-E699. DOI: 10.1152/ajpendo.1998.274.4.E692
  8. E. Muscelli et al. (1996). Effect of insulin on renal sodium and uric acid handling in essential hypertension. American Journal of Hypertension, 9(8), 746-752. DOI: 10.1016/0895-7061(96)00098-2
  9. D. Toyoki et al. (2017). Insulin stimulates uric acid reabsorption via regulating urate transporter 1 and ATP-binding cassette subfamily G member 2. American Journal of Physiology-Renal Physiology, 313(3), F826-F834. DOI: 10.1152/ajprenal.00012.2017
  10. M. E. Emukowhate, D. Perera & A. Wierzbicki. (2014). Dyslipidaemia related to insulin resistance and cardiovascular disease in South Asian and West African populations. Current Pharmaceutical Design, 20(40), 6270-6275. DOI: 10.2174/1381612820666140620114948
  11. N. Mikhail. (2009). The metabolic syndrome: insulin resistance. Current Hypertension Reports, 11(2), 156-158. DOI: 10.1007/s11906-009-0027-4
  12. R. H. Eckel, S. M. Grundy & P. Z. Zimmet. (2005). The metabolic syndrome. Lancet, 365(9468), 1415-1428. DOI: 10.1016/S0140-6736(05)66378-7
  13. G. Unger, S. F. Benozzi, F. Perruzza & G. L. Pennacchiotti. (2014). Triglycerides and glucose index: a useful indicator of insulin resistance. Endocrinology and Nutrition, 61(10), 533-540. DOI: 10.1016/j.endonu.2014.06.009
  14. A. Sanchez-Garcia et al. (2020). Diagnostic Accuracy of the Triglyceride and Glucose Index for Insulin Resistance: A Systematic Review. International Journal of Endocrinology, 2020, 4678526. DOI: 10.1155/2020/4678526
  15. L. Sanchez-Inigo, D. Navarro-Gonzalez, A. Fernandez-Montero, J. Pastrana-Delgado & J. A. Martinez. (2016). The TyG index may predict the development of cardiovascular events. European Journal of Clinical Investigation, 46(2), 189-197. DOI: 10.1111/eci.12583
  16. D. Navarro-Gonzalez, L. Sanchez-Inigo, J. Pastrana-Delgado, A. Fernandez-Montero & J. A. Martinez. (2016). Triglyceride-glucose index(TyG index) in comparison with fasting plasma glucose improved diabetes prediction in patients with normal fasting glucose: The Vascular-Metabolic CUN cohort. Preventive Medicine, 86, 99-105. DOI: 10.1016/j.ypmed.2016.01.022
  17. R. Zheng & Y. Mao. (2017). Triglyceride and glucose (TyG) index as a predictor of incident hypertension: a 9-year longitudinal population-based study. Lipids in Health and Disease, 16(1), 175. DOI: 10.1186/s12944-017-0562-y
  18. M. Laakso & Johanna Kuusisto. (2014). Insulin resistance and hyperglycaemia in cardiovascular disease development. Nature Reviews Endocrinology, 10(5), 293-302. DOI: 10.1038/nrendo.2014.29
  19. P. Angoorani et al. (2018). Validity of triglycerideglucose index as an indicator for metabolic syndrome in children and adolescents: the CASPIAN-V study. Eating and Weight Disorders, 23(6), 877-883. DOI: 10.1007/s40519-018-0488-z
  20. S. W. Yang, K. H. Park & Y. J. Zhou. (2016). The Impact of Hypoglycemia on the Cardiovascular System: Physiology and Pathophysiology. Angiology. 67(9), 802-809. DOI: 10.1177/0003319715623400
  21. J. P. Bastard, M. E. Lavoie, V. Messier, D. Prud'homme & R. Rabasa-Lhoret. (2012). Evaluation of two new surrogate indices including parameters not using insulin to assess insulin sensitivity/resistance in non-diabetic postmenopausal women: a MONET group study. Diabetes & Metabolism, 38(3), 258-263. DOI: 10.1016/j.diabet.2012.01.004
  22. W. Shi, L. Xing, L. Jing, Y. Tian & S. Liu. (2019). Usefulness of triglyceride-glucose index for estimating hyperuricemia risk: Insights from a general population. Postgraduate Medical Journal, 131(5), 348-356. DOI: 10.1080/00325481.2019.1624581
  23. Q. Gu, X. Hu, J. Meng, J. Ge, S. J. Wang & X. Z. Liu. (2020). Associations of triglyceride-glucose index and its derivatives with hyperuricemia risk: A Cohort study in Chinese general population. International Journal of Endocrinology, 2020, 3214716. DOI: 10.1155/2020/3214716
  24. J. S. Byun, J. N. Kim, Y. S. Song, Y. K. Roh & M. K. Choi. (2019). The relationship between hyperuricemia and triglyceride glucose index: Based on 2016 Korean National Health and Nutrition Examination Survey. Korean Journal of Family Practice, 9(3), 266-271. DOI: 10.21215/kjfp.2019.9.3.266
  25. World Health Organization. (1999). Report of a WHO consultation on obesity: Preventing and managing, the global epidemic. Geneva.
  26. L. You, A. Liu, G. Wuyun, H. Wu & P. Wang. (2014). Prevalence of hyperuricemia and the relationship between serum uric acid and metabolic syndrome in the Asian Mongolian area. Journal of Atherosclerosis and Thrombosis, 21(4), 355-365. DOI: 10.5551/jat.20529
  27. D. R. Matthews, J. P. Hosker, A. S. Rudenski, B. A. Naylor, D. F. Treacher & R. C. Turner. (1985). Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28(7), 412-419. DOI: 10.1007/BF00280883
  28. L. E. Simental-Mendia, M. Rodriguez-Moran & F. Guerrero-Romero. (2008). The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metabolic Syndrome and Related Disorders, 6(4), 299-304. DOI: 10.1089/met.2008.0034
  29. T. Bardin & P. Richette. (2017). Impact of comorbidities on gout and hyperuricaemia: an update on prevalence and treatment options. BMC Medicine, 15(1), 123. DOI: 10.1186/s12916-017-0890-9
  30. C. Borghi et al. (2015). Serum uric acid and the risk of cardiovascular and renal disease. Journal of Hypertension, 33(9), 1729-1741 DOI: 10.1097/HJH.0000000000000701
  31. Y. Xu et al. (2013). Hyperuricemia as an independent predictor of vascular complications and mortality in type 2 diabetes patients: a meta-analysis. Public Library of Science One, 8(10), e78206. DOI: 10.1371/journal.pone.0078206
  32. Y. Zhu et al. (2014). High uric acid directly inhibits insulin signalling and induces insulin resistance. Biochemical and Biophysical Research Communications, 447(4), 707-714. DOI: 10.1016/j.bbrc.2014.04.080
  33. S. Li et al. (2019). The role of the triglyceride (triacylglycerol) glucose index in the development of cardiovascular events: a retrospective cohort analysis. Scientific Reports, 9(1), 7320. DOI: 10.1038/s41598-019-43776-5
  34. J. L. Jin et al. (2018). Triglyceride glucose index for predicting cardiovascular outcomes in patients with coronary artery disease. Journal of Thoracic Disease, 10(11), 6137-6146. DOI: 10.21037/jtd.2018.10.79
  35. K. L. Donnelly, C. I. Smith, S. J. Schwarzenberg, J. Jessurun, M. D. Boldt & E. J. Parks. (2005). Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. Journal of Clinical Investigation, 115(5), 1343-1351. DOI: 10.1172/JCI23621
  36. G. M. Reaven. (1988). Role of insulin resistance in human disease. Diabetes, 37(12), 1595-1607. DOI: 10.2337/diab.37.12.1595