Browse > Article
http://dx.doi.org/10.15207/JKCS.2020.11.12.283

Usefulness of Triglyceride and Glucose Index to Predict the Risk of Hyperuricemia in Korean Adults  

Shin, Kyung-A (Dept. of Clinical Laboratory Science, Shinsung University)
Kim, Eun Jae (Dept. of Obstetrics and Gynecology, Seoul National University)
Publication Information
Journal of the Korea Convergence Society / v.11, no.12, 2020 , pp. 283-290 More about this Journal
Abstract
The purpose of this study was to evaluate the usefulness of the triglyceride and glucose(TyG) index to predict the risk of hyperuricemia in Korean adults. This study included 14,266 men and 9,033 women over 20 years old who underwent health screenings from 2017 to 2019 at a general hospital in Seoul. To confirm the risk of hyperuricemia and predictive ability of the TyG index, logistic regression analysis and ROC curves were obtained. The accuracy of the TyG index for predicting hyperuricemia was 0.68, 0.61 for men and 0.67 for women(respectively p<0.001). The risk of hyperuricemia in the TyG index was 1.69 times higher in the fourth quartile than in the first quartile, 2.03 times higher in men and 2.07 times higher in women(respectively p<0.05). Thus the TyG index was not of high diagnostic usefulness as a screening test for hyperuricemia, but it was related to the TyG index and hyperuricemia.
Keywords
Triglyceride and glucose index; Hyperuricemia; Uric acid; Insulin resistance; Dyslipidemia;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Zheng & Y. Mao. (2017). Triglyceride and glucose (TyG) index as a predictor of incident hypertension: a 9-year longitudinal population-based study. Lipids in Health and Disease, 16(1), 175. DOI: 10.1186/s12944-017-0562-y   DOI
2 M. Laakso & Johanna Kuusisto. (2014). Insulin resistance and hyperglycaemia in cardiovascular disease development. Nature Reviews Endocrinology, 10(5), 293-302. DOI: 10.1038/nrendo.2014.29   DOI
3 L. You, A. Liu, G. Wuyun, H. Wu & P. Wang. (2014). Prevalence of hyperuricemia and the relationship between serum uric acid and metabolic syndrome in the Asian Mongolian area. Journal of Atherosclerosis and Thrombosis, 21(4), 355-365. DOI: 10.5551/jat.20529   DOI
4 D. R. Matthews, J. P. Hosker, A. S. Rudenski, B. A. Naylor, D. F. Treacher & R. C. Turner. (1985). Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28(7), 412-419. DOI: 10.1007/BF00280883   DOI
5 L. E. Simental-Mendia, M. Rodriguez-Moran & F. Guerrero-Romero. (2008). The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metabolic Syndrome and Related Disorders, 6(4), 299-304. DOI: 10.1089/met.2008.0034   DOI
6 T. Bardin & P. Richette. (2017). Impact of comorbidities on gout and hyperuricaemia: an update on prevalence and treatment options. BMC Medicine, 15(1), 123. DOI: 10.1186/s12916-017-0890-9   DOI
7 C. Borghi et al. (2015). Serum uric acid and the risk of cardiovascular and renal disease. Journal of Hypertension, 33(9), 1729-1741 DOI: 10.1097/HJH.0000000000000701   DOI
8 Y. Xu et al. (2013). Hyperuricemia as an independent predictor of vascular complications and mortality in type 2 diabetes patients: a meta-analysis. Public Library of Science One, 8(10), e78206. DOI: 10.1371/journal.pone.0078206   DOI
9 Y. Zhu et al. (2014). High uric acid directly inhibits insulin signalling and induces insulin resistance. Biochemical and Biophysical Research Communications, 447(4), 707-714. DOI: 10.1016/j.bbrc.2014.04.080   DOI
10 S. Li et al. (2019). The role of the triglyceride (triacylglycerol) glucose index in the development of cardiovascular events: a retrospective cohort analysis. Scientific Reports, 9(1), 7320. DOI: 10.1038/s41598-019-43776-5   DOI
11 U. M. Khosla et al. (2005). Hyperuricemia induces endothelial dysfunction. Kidney International, 67(5), 1739-1742. DOI: 10.1111/j.1523-1755.2005.00273.x   DOI
12 F. Cortese et al. (2019). Uric acid: from a biological advantage to a potential danger. A focus on cardiovascular effects. Vascular Pharmacology, 120, 106565. DOI: 10.1016/j.vph.2019.106565   DOI
13 E. Krishnan, C. K. Kwoh, H. R. Schumacher & L. Kuller. (2007). Hyperuricemia and incidence of hypertension among men without metabolic syndrome. Hypertension, 49(2), 298-303. DOI: 10.1161/01.HYP.0000254480.64564.b6   DOI
14 D. Grassi et al. (2013). Chronic hyperuricemia, uric acid deposit and cardiovascular risk. Current Pharmaceutical Design, 19(13), 2432-2438. DOI: 10.2174/1381612811319130011   DOI
15 D. Roy, M. Perreault & A. Marette. (1998). Insulin stimulation of glucose uptake in skeletal muscles and adipose tissues in vivo is NO dependent. American Journal of Physiology, 274(4), E692-E699. DOI: 10.1152/ajpendo.1998.274.4.E692   DOI
16 E. Muscelli et al. (1996). Effect of insulin on renal sodium and uric acid handling in essential hypertension. American Journal of Hypertension, 9(8), 746-752. DOI: 10.1016/0895-7061(96)00098-2   DOI
17 D. Toyoki et al. (2017). Insulin stimulates uric acid reabsorption via regulating urate transporter 1 and ATP-binding cassette subfamily G member 2. American Journal of Physiology-Renal Physiology, 313(3), F826-F834. DOI: 10.1152/ajprenal.00012.2017   DOI
18 M. E. Emukowhate, D. Perera & A. Wierzbicki. (2014). Dyslipidaemia related to insulin resistance and cardiovascular disease in South Asian and West African populations. Current Pharmaceutical Design, 20(40), 6270-6275. DOI: 10.2174/1381612820666140620114948   DOI
19 S. W. Yang, K. H. Park & Y. J. Zhou. (2016). The Impact of Hypoglycemia on the Cardiovascular System: Physiology and Pathophysiology. Angiology. 67(9), 802-809. DOI: 10.1177/0003319715623400   DOI
20 P. Angoorani et al. (2018). Validity of triglycerideglucose index as an indicator for metabolic syndrome in children and adolescents: the CASPIAN-V study. Eating and Weight Disorders, 23(6), 877-883. DOI: 10.1007/s40519-018-0488-z   DOI
21 J. P. Bastard, M. E. Lavoie, V. Messier, D. Prud'homme & R. Rabasa-Lhoret. (2012). Evaluation of two new surrogate indices including parameters not using insulin to assess insulin sensitivity/resistance in non-diabetic postmenopausal women: a MONET group study. Diabetes & Metabolism, 38(3), 258-263. DOI: 10.1016/j.diabet.2012.01.004   DOI
22 World Health Organization. (1999). Report of a WHO consultation on obesity: Preventing and managing, the global epidemic. Geneva.
23 W. Shi, L. Xing, L. Jing, Y. Tian & S. Liu. (2019). Usefulness of triglyceride-glucose index for estimating hyperuricemia risk: Insights from a general population. Postgraduate Medical Journal, 131(5), 348-356. DOI: 10.1080/00325481.2019.1624581   DOI
24 Q. Gu, X. Hu, J. Meng, J. Ge, S. J. Wang & X. Z. Liu. (2020). Associations of triglyceride-glucose index and its derivatives with hyperuricemia risk: A Cohort study in Chinese general population. International Journal of Endocrinology, 2020, 3214716. DOI: 10.1155/2020/3214716   DOI
25 J. S. Byun, J. N. Kim, Y. S. Song, Y. K. Roh & M. K. Choi. (2019). The relationship between hyperuricemia and triglyceride glucose index: Based on 2016 Korean National Health and Nutrition Examination Survey. Korean Journal of Family Practice, 9(3), 266-271. DOI: 10.21215/kjfp.2019.9.3.266   DOI
26 S. Kodama et al. (2009). Association between serum uric acid and development of type 2 diabetes. Diabetes Care, 32(9), 1737-1742. DOI: 10.2337/dc09-0288   DOI
27 J. L. Jin et al. (2018). Triglyceride glucose index for predicting cardiovascular outcomes in patients with coronary artery disease. Journal of Thoracic Disease, 10(11), 6137-6146. DOI: 10.21037/jtd.2018.10.79   DOI
28 K. L. Donnelly, C. I. Smith, S. J. Schwarzenberg, J. Jessurun, M. D. Boldt & E. J. Parks. (2005). Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. Journal of Clinical Investigation, 115(5), 1343-1351. DOI: 10.1172/JCI23621   DOI
29 G. M. Reaven. (1988). Role of insulin resistance in human disease. Diabetes, 37(12), 1595-1607. DOI: 10.2337/diab.37.12.1595   DOI
30 E. Krishnan. (2014). Interaction of inflammation, hyperuricemia, and the prevalence of hypertension among adults free of metabolic syndrome: NHANES 2009-2010. Journal of the American Heart Association, 3(2), e000157. DOI: 10.1161/JAHA.113.000157   DOI
31 A. Sanchez-Garcia et al. (2020). Diagnostic Accuracy of the Triglyceride and Glucose Index for Insulin Resistance: A Systematic Review. International Journal of Endocrinology, 2020, 4678526. DOI: 10.1155/2020/4678526   DOI
32 N. Mikhail. (2009). The metabolic syndrome: insulin resistance. Current Hypertension Reports, 11(2), 156-158. DOI: 10.1007/s11906-009-0027-4   DOI
33 R. H. Eckel, S. M. Grundy & P. Z. Zimmet. (2005). The metabolic syndrome. Lancet, 365(9468), 1415-1428. DOI: 10.1016/S0140-6736(05)66378-7   DOI
34 G. Unger, S. F. Benozzi, F. Perruzza & G. L. Pennacchiotti. (2014). Triglycerides and glucose index: a useful indicator of insulin resistance. Endocrinology and Nutrition, 61(10), 533-540. DOI: 10.1016/j.endonu.2014.06.009   DOI
35 L. Sanchez-Inigo, D. Navarro-Gonzalez, A. Fernandez-Montero, J. Pastrana-Delgado & J. A. Martinez. (2016). The TyG index may predict the development of cardiovascular events. European Journal of Clinical Investigation, 46(2), 189-197. DOI: 10.1111/eci.12583   DOI
36 D. Navarro-Gonzalez, L. Sanchez-Inigo, J. Pastrana-Delgado, A. Fernandez-Montero & J. A. Martinez. (2016). Triglyceride-glucose index(TyG index) in comparison with fasting plasma glucose improved diabetes prediction in patients with normal fasting glucose: The Vascular-Metabolic CUN cohort. Preventive Medicine, 86, 99-105. DOI: 10.1016/j.ypmed.2016.01.022   DOI