DOI QR코드

DOI QR Code

스크린설치높이·공기유입량 차이에 따른 벤로형 유리온실 미기상 CFD 유동해석

CFD Analysis for Microclimate of Venlo Type Glasshouse with the Screen Height and Air-inflow Quantity

  • Yang, Won Mo (Department of Horticulture Sunchon National University)
  • 투고 : 2019.02.08
  • 심사 : 2020.01.16
  • 발행 : 2020.01.31

초록

겨울철 벤로형 유리온실(W59×L68×H5.9m) 보온스크린 높이의 차이에 따른 실내온도 변화를 파악하기 위하여 00시부터 04시까지 30분 간격으로 열유동해석을 하였다. 초기에는 상대적으로 난방 외부접촉면적이 큰 보온스크린 설치높이 5.9m에서 보온스크린 설치높이 4.1m에 비해 온도감소가 빨라 낮은 온도를 나타냈으나 해석 2시간 이후부터는 상대적으로 온도감소가 느렸고 04시에는 0.6℃ 높았다. 그러나 해석시작1시간 후 실내온도가 약13℃까지 내려가고, 그 이전에 난방기가 작동해야 된다고 볼 때, 해석 2시간 동안 온도감소가 상대적으로 느렸던 보온스크린 설치높이 4.1m에서 5.1m에 비해 난방에너지 절감에 유리할 것으로 판단되었다. 토마토가 자라는 지면 2m 높이에서의 유동은 보온스크린 설치높이 5.9m에서 4.1m에 비해 상대적으로 넓고 빨랐으며 유동해석 1시간 후인 01시의 평균차이는 0.034m·s-1였다. 여름철 차광스크린 설치높이를 5.7m와 3.9m로 달리하되70%닫힘 조건에서 12시부터 13시까지는 온실하부덕트 외부공기유입량 0.67㎥·s-1 상태 그 후부터는 외부 유입공기를 3배로 증가하여 냉방효과를 비교하였다. 초기 12시부터 13시까지는 차광스크린 70%닫힘 상태에서 무차광에 비해 오히려 평균 약0.9℃ 높았지만 외부공기유입량이 증가하는 13시 이후 부터는 차광스크린 70%닫힘 조건에서 온도가 감소하였고 14시 30분에는 무차광에 비해 0.5℃ 낮았다. 차광스크린 70% 닫힘 조건에서 바닥면의 온도분포는 스크린 설치높이와 개방 정도에 비례하여 낮았으며 무차광에 비해 8℃이상 낮았다. 온실 내 상대습도는 차광스크린을 30% 개방하는 조건에서는 차광스크린의 높이나 개방정도에 따른 차이가 미미하였다.

The natural change of winter night temperature from 00:00 to 04:30 O'clock with the different height of thermal screen in a venlo type glasshouse (W59×L68×H5.9 m) was studied using computational fluid dynamics (CFD). At the early stage of CFD analysis, the room temperature decrease of glasshouse with the 5.9 m height of thermal screen were faster than it with the 4.1m height of thermal screen, but at 2 hr after analysis it was slower than in it with the 4,1m, the temperature difference was 0.6℃ after 4 hr. If we consider that turn on the heater when the temperature were decrease below 13℃ at 1hr after CFD analysis, it is good for energy saving in the glasshouse with the 4.1 m height of thermal screen rather than in it with the 5.9 m height, because of the temperature decrease were slow during 2 hrs after analysis. The airflow at the height of 2 m which were grown tomato were fast and wide in the glasshouse with the 5.9 m height thermal screen rather than in it with the 4.1 m, the speed difference was 0.034m·s-1 at 1hr after CFD analysis. The effect of temperature decrease in summer season were compared with the different height of shading screen from 12:00 to 14:30 O'clock. The height of shading screen were 5.7, 3.9 m, the gap of it were 30%. The air-inflow quantity by the fan with duct at lower part of venlo glasshouse was 0.67 ㎥·s-1 until 1hr and to increase 3 times of it from 1hr after analysis. The roof window were open 100%. Until 1hr of CFD analysis, the temperature in the 30% open of shading screen was 0.9℃ higher than in the none shading screen. From 13:00 O'clock when the air-inlet quantity to increase 3 times, the temperature in case 30% gap of shading screen were decreased compare with the none shading screen, the temperature difference was 0.5℃ at 14:30 O'clock. The temperature on the floor surface in case 30% gap of shading screen were lower with it's height increase, the temperature difference was 8℃ compare with none shading screen. The relative humidity difference were insignificant by the height and gap of shading screen.

키워드

참고문헌

  1. Bartzanas, T., M. Kacira, H. Zhu, S. Karmakar, E. Tamimi, N. Katsoulas, I.B. Lee, and C. Kittas. 2013. Computational fluid dynamics applications to improve crop production systems. Computers and Electronics in Agriculture 93: 151-167. https://doi.org/10.1016/j.compag.2012.05.012
  2. Boulard, T., J.C. Roy, H. Fatnassi, A. Kichah, and I-B. Lee. 2010. Computer fluid dynamics prediction of climate and fungal spore transfer in rose greenhouse. Computers and Electronics in Agriculture 74:280-292. https://doi.org/10.1016/j.compag.2010.09.003
  3. Campen, J.B. 2006. Ventilation of small multispan greenhouse in relation to the window openings calculated with CFD. ISHS 2006 Acta Hort. 718:351-356.
  4. Davide P. 2012. Analysis of night-time climate in plasticcovered greenhouses. Tesi Doctoral., Universitat Politecnica de Catalunya. p. 6-17, 48-79, 80-109.
  5. He, K.S, D.Y. Chen, L.J. Sun, Z.L. Liu, and Z.Y. Huang. 2015. The effect of vent openings on the microclimate inside multi-span greenhouses during summer and winter seasons. Engineering Applications of Computational Fluid Mechanics 9(1):399-410. https://doi.org/10.1080/19942060.2015.1061553
  6. Hong, S-W., I-B. Lee, H-S. Hwang, I-H. Seo, J.P. Bitog, J-L. Yoo, K-S. Kim, S-H. Lee, K-W. Kim and N-K. Yoon. 2008. Numerical simulation of ventilation efficiencies of naturally ventilated multi-span greenhouses in Korea. Amer. Soc. of Agricultural and Biological Engineers. 51(4):1417-1432.
  7. Hong, S.W and I.B. Lee. 2014. Predictive model of micro-environment in a naturally ventilated greenhouse for a model-based control approach. Protected Horticulture and Plant Factory 23(3):181-191 (in Korean). https://doi.org/10.12791/KSBEC.2014.23.3.181
  8. Kim, K., J.Y. Yoon, H.J. Kwon, J.H. Han, J.E. Son, S.W. Nam, G.A. Giacomelli, and I.B. Lee. 2008. 3-D CFD analysis of relative humidity distribution in greenhouse with a fog cooling system and refrigerative dehumidifiers. Biosystems Engineering 100:245-255. https://doi.org/10.1016/j.biosystemseng.2008.03.006
  9. Lee, I., S. Lee, G. Kim, J. Sung, S. Sung and Y. Yoon. 2005. PIV verification of greenhouse ventilation air flows to evaluate CFD accuracy. Amer. Soc. of Agri. Engineers 48(5):2277-2288.
  10. Lee, I.B and T.H. Short. 2001. Verification of computational fluid dynamic temperature simulations in a full-scale naturally ventilated greenhouse. Amer. Soc. of Agri. Engineers 44(1):119-127. https://doi.org/10.13031/2013.2303
  11. Liu, S.Z., Y. He, Y.B. Zhang, and X.W. Miao. 2005. Prediction and analysis model of temperature and its application to a natural ventilation multi-span plastic greenhouse equipped with insect-proof screen. Journal of University Science 6(B)(6):523-529.
  12. Majdoubi, H., T. Boulard, H. Fatnassi, and L.C. Bouirden. 2009. Airflow and microclimate patterns in a one-hectare canary type greenhouse: an experimental and CFD assisted study. Agricultural and Forest Meteorology 149:1050-1062. https://doi.org/10.1016/j.agrformet.2009.01.002
  13. Nam, S.W., Y.S. Kim and D.U. Seo. 2013. Eva;uation of natural ventilation performance for multi-span plastic greenhouse. Protected Horticulture and Plant Factory, 22(1):7-12.(in Korean) https://doi.org/10.12791/KSBEC.2013.22.1.007