DOI QR코드

DOI QR Code

생육 챔버를 이용하여 광도 및 이산화탄소 농도 변수를 갖는 상추(Lactuca sativa L.)의 군락 광합성 곡선의 효율적 도출 방법

An Efficient Method for Establishing Canopy Photosynthesis Curves of Lettuce (Lactuca sativa L.) with Light Intensity and CO2 Concentration Variables Using Controlled Growth Chamber

  • 정대호 (서울대학교 식물생산과학부 및 농업생명과학연구원) ;
  • 김태영 (서울대학교 식물생산과학부 및 농업생명과학연구원) ;
  • 손정익 (서울대학교 식물생산과학부 및 농업생명과학연구원)
  • Jung, Dae Ho (Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Tae Young (Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Son, Jung Eek (Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University)
  • 투고 : 2019.12.03
  • 심사 : 2020.01.16
  • 발행 : 2020.01.31

초록

군락 광합성 모델의 도출을 위하여 생육 챔버가 필요하며, 이를 위한 광합성의 효율적인 측정 방법이 필요하다. 본 연구의 목적은 내부 환경 제어가 가능한 생육 챔버를 이용하여 광도 및 이산화탄소 농도 변수를 갖는 로메인상추(Lactuca sativa L.)의 군락 광합성 곡선을 도출하는 방법을 확립하는 것이다. 실험에 사용한 상추는 식물공장 모듈에서 재배되었으며, 군락 광합성을 측정하기 위하여 아크릴로 제작된 생육 챔버(1.0x0.8x0.5m)를 이용하였다. 첫 번째로, 다음의 두 방법을 적용하여 측정된 군락 광합성 속도를 통해 각 방법의 시정수를 계산하여 비교하였다. 즉, 1) CO2 농도를 고정(1,000μmol·mol-1) 하고 광도를 변화(340, 270, 200, and 130μmol·m-2·s-1) 시키거나, 2) 광도를 고정(200μmol·m-2·s-1)하고 CO2 농도를 변화(600, 1,000, 1,400, and 1,800μmol·mol-1) 시켰다. 두 번째로, 1)과 2)의 방식을 적용하여 군락 광합성을 측정했을 때, 특정 광도(200μmol·m-2·s-1)와 특정 CO2 농도(1,000μmol·mol-1)에서 측정된 군락 광합성 속도 값을 비교하였다. 실험 결과 CO2 농도를 변화시키는 방식의 시정수는 광도를 변화시키는 방식에 비해 3.2배 큰 값을 나타내었다. 광도를 변화시키며 측정할 때 군락 광합성 속도는 1분 이내에 안정되었고, CO2 농도를 변화시킬 경우에는 6분 이상의 시간이 소요되었다. 따라서 광도를 변화시키는 측정 방식이 생육 챔버를 이용하여 작물의 군락 광합성 속도를 측정할 때 적합한 방식임을 확인하였다.

For developing a canopy photosynthesis model, an efficient method to measure the photosynthetic rate in a growth chamber is required. The objective of this study was to develop a method for establishing canopy photosynthetic rate curves of romaine lettuce (Lactuca sativa L.) with light intensity and CO2 concentration variables using controlled growth chamber. The plants were grown in plant factory modules, and the canopy photosynthesis rates were measured in sealed growth chambers made of acrylic (1.0 × 0.8 × 0.5 m). First, the canopy photosynthetic rates of the plants were measured, and then the time constants were compared between two application methods: 1) changing light intensity (340, 270, 200, and 130 μmol·m-2·s-1) at a fixed CO2 concentration (1,000 μmol·mol-1) and 2) changing CO2 concentration (600, 1,000, 1,400, and 1,800 μmol·mol-1) at a fixed light intensity (200 μmol·m-2·s-1). Second, the canopy photosynthetic rates were measured by changing the light intensity at a CO2 concentration of 1,000 μmol·mol-1 and compared with those measured by changing the CO2 concentration at a light intensity of 200 μmol·m-2·s-1. The time constant when changing the CO2 concentration at the fixed light intensity was 3.2 times longer, and the deviation in photosynthetic rate was larger than when changing the light intensity. The canopy photosynthetic rate was obtained stably with a time lag of one min when changing the light intensity, while a time lag of six min or longer was required when changing the CO2 concentration. Therefore, changing the light intensity at a fixed CO2 concentration is more appropriate for short-term measurement of canopy photosynthesis using a growth chamber.

키워드

참고문헌

  1. Bazot, S., H. Blum, and C. Robin. 2008. Nitrogen rhizodeposition assessed by a ($NH_3$)-N-15 shoot pulse-labelling of Lolium perenne L. grown on soil exposed to 9 years of $CO_2$ enrichment. Environ. Exp. Bot. 63:410-415. https://doi.org/10.1016/j.envexpbot.2007.10.020
  2. Caporn, S.J.M. and W.A. Wood. 1990. A controlled‐environment chamber for measurement of canopy photosynthesis by small stands of lettuce (Lactuca sativa L.). Plant Cell Environ. 13:489-493. https://doi.org/10.1111/j.1365-3040.1990.tb01327.x
  3. Carporn, S.J.M. 1989. The effects of oxides of nitrogen and carbon dioxide enrichment on photosynthesis and growth of lettuce (Lactuca sativa L.). New Phytol. 111:473-481. https://doi.org/10.1111/j.1469-8137.1989.tb00710.x
  4. Chang, Z.Q., Q. Feng, J.H. Si, Y.H. Su, H.Y. Xi, and J.L. Li 2009. Analysis of the spatial and temporal changes in soil $CO_2$ flux in alpine meadow of Qilian Mountain. Environ. Geol. 58:483-490. https://doi.org/10.1007/s00254-008-1521-8
  5. Creese, C., S. Oberbauer, P. Rundel, and L. Sack. 2014. Are fern stomatal responses to different stimuli coordinated? Testing responses to light, vapor pressure deficit, and $CO_2$ for diverse species grown under contrasting irradiances. New Phytol. 204:92-104. https://doi.org/10.1111/nph.12922
  6. Del Pozo, A., P. Perez, D. Gutierrez, A. Alonso, R. Morcuende, and R. Martinez-Carrasco. 2007. Gas exchange acclimation to elevated $CO_2$ in upper-sunlit and lower-shaded canopy leaves in relation to nitrogen acquisition and partitioning in wheat grown in field chambers. Environ. Exp. Bot. 59:371-380. https://doi.org/10.1016/j.envexpbot.2006.04.009
  7. Dutton, R.G., J. Jiao, M.J. Tsujita, and B. Grodzinski. 1988. Whole plant $CO_2$ exchange measurements for nondestructive estimation of growth. Plant Physiol. 86:355-358. https://doi.org/10.1104/pp.86.2.355
  8. Elmore, C.D. 1980. The paradox of no correlation between leaf photosynthetic rates and crop yields In: Hesketh JD, Jones JW (Eds.), Predicting photosynthesis for ecosystem models, Vol. 2. Boca Raton, CRC Press, FL, pp 155-167.
  9. Evans, J.R., and S. von Caemmerer. 1996. Carbon dioxide diffusion inside leaves. Plant Physiol. 110:339. https://doi.org/10.1104/pp.110.2.339
  10. Evans, L.T. 1996. Crop evolution, adaptation and yield. Cambridge University Press, Cambridge, pp 146-152.
  11. Flexas, J., A. Diaz-Espejo, J.A. Berry, J. Cifre, J. Galmes, R. Kaidenhoff, H. Medrano, and M. Ribas-Carbo. 2007. Analysis of leakage in IRGA's leaf chambers of open gas exchange systems: quantification and its effects in photosynthesis parameterization. J. Exp. Bot. 58:1533-1543. https://doi.org/10.1093/jxb/erm027
  12. Garcia, R.L., J.M. Norman, and D.K. McDermitt. 1990. Measurements of canopy gas exchange using an open chamber system. Remote Sens. Rev. 5:141-162. https://doi.org/10.1080/02757259009532126
  13. Gross, L.J. and B.F. Chabot. 1979. Time course of photosynthetic response to changes in incident light energy. Plant Physiol. 63:1033-1038. https://doi.org/10.1104/pp.63.6.1033
  14. Inkham, C., P. Piriyapongpitak, and S. Ruamrungsri. 2019. Storage and growth temperatures affect growth, flower quality, and bulb quality of Hippeastrum. Hortic. Environ. Biotechnol. 60:357-362. https://doi.org/10.1007/s13580-019-00124-w
  15. Austin, J., Y.A. Jeon, M.K. Cha, S. Park, and Y.Y. Cho. 2016. Effects of photoperiod, light intensity and electrical conductivity on the growth and yield of quinoa (Chenopodium quinoa Willd.) in a closed-type plant factory system. Kor. J. Hortic. Sci. Technol. 34:405-413.
  16. Johnson, I.R., J.H.M. Thornley, J.M. Frantz, and B. Bugbee. 2010. A model of canopy photosynthesis incorporating protein distribution through the canopy and its acclimation to light, temperature and $CO_2$. Ann. Bot. 106:735-749. https://doi.org/10.1093/aob/mcq183
  17. Jung, D.H., D. Kim, H.I. Yoon, T.W. Moon. K.S. Park, and J.E. Son. 2016. Modeling the canopy photosynthetic rate of romaine lettuce (Lactuca sativa L.) grown in a plant factory at varying $CO_2$ concentrations and growth stages. Hortic. Environ. Biotechnol. 57:487-492. https://doi.org/10.1007/s13580-016-0103-z
  18. Jung, D.H., H.I. Yoon, and J.E. Son. 2017. Development of a three-variable canopy photosynthetic rate model of romaine lettuce (Lactuca sativa L.) grown in plant factory modules using light intensity, temperature, and growth stage. Protect. Hortic. Plant. Fact. 26:268-275. https://doi.org/10.12791/KSBEC.2017.26.4.268
  19. Kaipiainen, E.L. and P. Pelkonen. 2007. Requirements for obtaining maximum indices of photosynthesis and transpiration in attached leaves of willow plants grown in short. Russ. J. Plant Physiol. 54:309-313. https://doi.org/10.1134/S102144370703003X
  20. Kim, S. and H. Lieth. 2003. A coupled model of photosynthesis, stomatal conductance and transpiration for a rose leaf (Rosa hybrida L.). Ann. Bot. 91:771-781. https://doi.org/10.1093/aob/mcg080
  21. Knight, S.L., C.P. Akers, S.W. Akers, and C.A. Mitchell. 1988. Minitron-Ii system for precise control of the plant-growth environment. Photosynthetica 22:90-98.
  22. Langensiepen, M., M. Kupisch, M.T. Wijk, and F. van Ewert. 2012. Analyzing transient closed chamber effects on canopy gas exchange for optimizing flux calculation timing. Agric. Forest Meteorol. 164:61-70. https://doi.org/10.1016/j.agrformet.2012.05.006
  23. Mcdermitt, D.K., J.M. Norman, J.T. Davis, T.M. Ball, T.J. Arkebauer, J.M. Welles, and S.R. Roerner. 1989. $CO_2$ response curves can be measured with a field-portable closed-loop photosynthesis system. Ann. Sci. For. INRA/EDP Sci. 46:416-420. https://doi.org/10.1051/forest:19890593
  24. Mills, E. 2012. The carbon footprint of indoor cannabis production. Energy Policy 46:58-67. https://doi.org/10.1016/j.enpol.2012.03.023
  25. Pastenes, C., E. Santa-Mari, R. Infante, and N. Franck. 2003. Domestication of the Chilean guava (Ugni molinae Turcz.), a forest understorey shrub, must consider light intensity. Sci. Hortic. 98:71-84. https://doi.org/10.1016/S0304-4238(02)00224-8
  26. Rappaport, F., D. Beal, A. Vermeglio, and P. Joliot. 1998. Time-resolved electron transfer at the donor side of Rhodopseudomonas viridis photosynthetic reaction centers in whole cells. Photosynth. Res. 55:317-323. https://doi.org/10.1023/A:1005930018775
  27. Rochette, P., B. Ellert, E.G. Gregorich, R.L. Desjardins, E. Pattey, R. Lessard, and B.G. Johnson. 1997. Description of a dynamic closed chamber for measuring soil respiration and its comparison with other techniques. Can. J. Soil Sci. 77:195-203. https://doi.org/10.4141/S96-110
  28. Schwartzkopf, H., and Stofan, P.E. 1981. A chamber design for closed ecological systems research. American Society of Mechanical Engineers, Intersociety Conference on Environmental Systems, San Francisco, CA, July 13-15, p. 5.
  29. Sestak, Z., J. Catsky, and P.G. Jarvis. 1971. Plant photosynthetic production: Manual and methods, Junk Publisher, The Hague, p 819.
  30. Shimizu, H., M. Kushida, and W. Fujinuma. 2008. A growth model for leaf lettuce under greenhouse envrionments. Environ. Control Biol. 46:211-219. https://doi.org/10.2525/ecb.46.211
  31. Shin, J.H., T.I. Ahn, and J.E. Son. 2011. Quantitative measurement of carbon dioxide consumption of a whole paprika plant (Capsicum annumm L.) using a large sealed chamber. Kor. J. Hortic. Sci. Technol. 29:211-216.
  32. Shipp, J.L., X. Hao, A.P. Papadopoulos, and M.R. Binns. 1998. Impact of western flower thrips (Thysanoptera: Thripidae) on growth, photosynthesis and productivity of greenhouse sweet pepper. Sci. Hortic. 72:87-102. https://doi.org/10.1016/S0304-4238(97)00130-1
  33. Song, Q., H. Xiao, X. Xiao, and X.G. Zhu. 2016. A new canopy photosynthesis and transpiration measurement system (CAPTS) for canopy gas exchange research. Agric. Forest Meteorol. 217:101-107.
  34. Steduto, P., O. Çetinkoku, R. Albrizio, and R. Kanber. 2002. Automated closed-system canopy-chamber for continuous field-crop monitoring of $CO_2$ and $H_2O$ fluxes. Agric. Forest Meteorol. 111:171-186. https://doi.org/10.1016/S0168-1923(02)00023-0
  35. Suh, S.U., Y.M Chun, N.Y. Chae, J. Kim, J.H. Lim, M. Yokozawa, M.S. Lee, and J.S. 2006. A chamber system with automatic opening and closing for continuously measuring soil respiration based on an open-flow dynamic method. Ecol. Res. 21:405-414. https://doi.org/10.1007/s11284-005-0137-7
  36. Wagner, S.W. and D.C. Reicosky. 1992. Closed-chamber effects on leaf temperature, canopy photosynthesis, and evapotranspiration. Agron. J. 84:731-738. https://doi.org/10.2134/agronj1992.00021962008400040035x
  37. Wheeler, R.M. 1992. Gas exchange measurements using a large, closed plant growth chamber. HortScience 27:777-780. https://doi.org/10.21273/HORTSCI.27.7.777
  38. Wheeler, R.M., C.L. Mackowiak, G.W. Stutte, J.C. Sager, N.C. Yotio, L.M. Ruffe, R.E. Fortson, T.W. Dreschel, W. M. Knott, and K.A. Corey. 1996. NASA's biomass production chamber: a testbed for bioregenerative life support studies. Adv. Space Res. 18:215-224.
  39. Yamazaki, K. 1982. Nutrient solution culture. Pak-kyo, Tokyo, Japan p. 251.