DOI QR코드

DOI QR Code

시설재배된 설향딸기의 수확시기가 수확후 품질에 미치는 영향

Determination of the Harvest Date and Ripening Phase of 'Seolhyang' Strawberry

  • 홍세진 (강릉원주대학교 식물생명과학과) ;
  • 엄향란 (강릉원주대학교 식물생명과학과)
  • Hong, Sae Jin (Department of Plant Science, College of Life Sciences, Gangneung-Wonju National University) ;
  • Eum, Hyang Lan (Department of Plant Science, College of Life Sciences, Gangneung-Wonju National University)
  • 투고 : 2019.10.21
  • 심사 : 2020.01.20
  • 발행 : 2020.01.31

초록

본 연구는 '설향' 딸기의 수확시기에 따른 품질 특성을 확인하고, 상온(20℃)·cold-chain(10-12℃)·저온(5℃) 유통에 적합한 숙성단계를 조사하기 위하여 수행하였다. 딸기는 12월 20일부터 5월 9일까지 6번에 걸쳐서 수확하였다. 딸기를 수확할 때 적합한 숙성 정도는 3월까지는 경도 2.9-3.0 N, 당도 8.6 °Brix 이상이었으나, 4월 이후에는 당도가 감소하였다. 딸기의 숙성을 결정하는 주요 요인은 붉게 착색된 정도이고, Hunter a 값은 32-37, hue angle은 36-45℃였다. 딸기의 후숙 실험에서 숙성 정도는 딸기의 착색이 진행되는 정도에 따라서 결정되었으며, 상온에서는 10%/day, 10-12℃에서는 5%/day, 5℃에서는 3%/day씩 착색이 진행되었다. 따라서 상온에서 유통할 경우에는 80%, cold-chain·저온에서 유통하기 위해서는 90%의 착색된 과실을 수확하여야 유통하는 동안 상품성이 유지되었다. 그리고 상온에서는 70% 이하로 착색된 딸기를 유통하거나, 저온에서는 80% 이하로 착색된 딸기를 유통하는 경우에는 100% 착색이 이루어지지 않고 상품성을 잃었다.

The purpose of this study was to investigate the quality characteristics of ripe fruit based on harvest date and to examine the ripening phase of 'Seolhyang' strawberry suitable for room temperature, cold-chain, and low temperature distribution. The strawberries were harvested six times between December 20 to May 9. The appropriate maturity of strawberries is characterized by the firmness of approximately 2.9-3.0 N, and SSC remained above 8.6 °Brix until March and declined after April. The quality index values that determine the maturity stage of strawberries should be red color, Hunter a value ranging from 32 to 37, and hue angle of 36-45℃. For the after-ripening experiment, the progression rate of the ripening stage determined based on strawberry color was 10%/day at room temperature, 5%/day at 10-12℃, and 3%/day at 5℃. Thus, strawberries should be harvested at 80% coloring stage for distribution at room temperature and at least 90% for low temperature storage to maintain the merchantability. Besides, strawberries harvested at 70% coloring stage at room temperature and strawberries harvested below 80% coloring stage at low temperatures below 5℃ had lost commercial value before reaching 100% coloring stage.

키워드

참고문헌

  1. Ahn, S., A. Lee, M. Wang, and Y. Hwang. 2014. Increase of strawberry fruit shelf-life through preharvest spray of calcium-chitosan and postharvest treatment with high pressure $CO_2$. Kor. J. Hort. Sci. Technol. 32:636-644.
  2. Cao, F., C. Guan, H. Dai, X. Li, and Z. Zhang. 2015. Soluble solids content is positively correlated with phosphorus content in ripening strawberry fruits. Sci. Hort. 195:183-187. https://doi.org/10.1016/j.scienta.2015.09.018
  3. Chaves, V.C., E. Calvete, and F.H. Reginatto. 2017. Quality properties and antioxidant activity of seven strawberry (Fragaria $\times$ ananassa Duch) cultivars. Sci. Hort. 225:293-298. https://doi.org/10.1016/j.scienta.2017.07.013
  4. Given, N.M., M.A. Venis, and D. Grierson. 1988. Hormonal regulation of ripening in the strawberry, a non-climacteric fruit. Plant 174:402-406. https://doi.org/10.1007/BF00959527
  5. Hashmi, M.S., A.R. East, J.S. Palmer, and J.A. Heyes. 2013. Pre-storage hypobaric treatments delay fungal decay of strawberries. Postharvest Biol. Technol. 77:75-79. https://doi.org/10.1016/j.postharvbio.2012.11.008
  6. Kim, S.K., D.S. Kim, D.Y. Kim, and C. Chun. 2015. Variation of bioactive compounds content of 14 oriental strawberry cultivars. Food Chem. 184:196-202. https://doi.org/10.1016/j.foodchem.2015.03.060
  7. Liu, C., H. Zheng, K. Sheng, W. Liu, and L. Zheng. 2018. Effects of melatonin treatment on the postharvest quality of strawberry fruit. Postharvest. Biol. Technol. 139:47-55. https://doi.org/10.1016/j.postharvbio.2018.01.016
  8. Ministry of Agriculture, Food and Rural Affairs (MAFRA) (2018) Primary statistics for agriculture production (http://www.kati.net/product/basisInfo.do?lcdCode=MD149).
  9. Nunes, M.C.N., J.K. Brecht, A.M.M.B. Morais, and S.A. Sargent. 2006. Physicochemical changes during strawberry development in the field compared with those that occur in harvested fruit during storage. J. Sci. Food Agric. 86:180-190. https://doi.org/10.1002/jsfa.2314
  10. Ornelas-Paz, J.J., E.M. Yahia, N. Ramirez-Bustamante, J.D. Perez-Martinez, M.P. Escalante-Minakata, V. Ibarra-Junquera, C. Acosta-Muniz, V. Guerrero-Prieto, and E. Ochoa-Reyes. 2013. Physical attributes and chemical composition of organic strawberry fruit (Fragaria $\times$ ananassa Duch, cv. Albion) at six stages of ripening. Food Chem. 138:372-381. https://doi.org/10.1016/j.foodchem.2012.11.006
  11. Poel, B.V., T. Vandendriessche, M.L.A.T.M. Hertog, B.M. Nicolai, and A. Geeraerd. 2014. Detached ripening of non-climacteric strawberry impairs aroma profile and fruit quality. Postharvest Biol. Technol. 95:70-80. https://doi.org/10.1016/j.postharvbio.2014.04.012
  12. Samec, D., M. Maretic, I. Lugaric, A. Mesic, B. Salopek-Sondi, and B. Duralija. 2016. Assessment of the differences in the physical, chemical and phytochemical properties of four strawberry cultivars using principal component analysis. Food Chem. 194:828-834. https://doi.org/10.1016/j.foodchem.2015.08.095
  13. Silva, F.L., M.T. Escribano-Bailon, J.J.P. Alonso, J.C. Rivas-Gonzalo, and C. Santos-Buelga. 2007. Anthocyanin pigments in strawberry. LWT-Food Sci. Technol. 40:374-382. https://doi.org/10.1016/j.lwt.2005.09.018
  14. Souleyre, E.J.F., P.P.M. Iannetta, H.A. Ross, R.D. Hancock, L.V.T. Shepherd, R. Viola, M.A. Taylor, and H.V. Davies. 2004. Starch metabolism in developing strawberry (Fragaria $\times$ ananassa) fruits. Physiol. Plant. 121:369-376. https://doi.org/10.1111/j.0031-9317.2004.0338.x
  15. Tulipani, S., G. Marzban, A. Herndl, M. Laimer, B. Mezzetti, and M. Battino. 2011. Influence of environmental and genetic factors on health-related compounds in strawberry. Food Chem. 124:906-913. https://doi.org/10.1016/j.foodchem.2010.07.018
  16. Voca, S., L. Jakobek, J. Druzic, Z. Sindrak, N. Dobricevic, M. Seruga, and A. Kovac. 2009. Quality of strawberries produced applying two different growing systems. CyTA - J. Food 7:201-207. https://doi.org/10.1080/19476330902940564
  17. Wang, S.Y. and H.S. Lin. 2006. Effect of plant growth temperature on membrane lipids in strawberry (Fragaria $\times$ ananassa Duch.). Sci. Hort. 108:35-42. https://doi.org/10.1016/j.scienta.2006.01.005
  18. Wang, S.Y. and M.J. Camp. 2000. Temperatures after bloom affect plant growth and fruit quality of strawberry. Sci. Hort. 85:183-199. https://doi.org/10.1016/S0304-4238(99)00143-0
  19. Zhang, L., L. Wang, X. Zeng, R. Chen, S. Yang, and S.A. Pan. 2019. Comparative transcriptome analysis reveals fruit discoloration mechanisms in postharvest strawberries in response to high ambient temperature. Food Chem. In Press.
  20. Zhang, W., M. Seki, and S. Furusaki. 1997. Effect of temperature and its shift on growth and anthocyanin production in suspension cultures of strawberry cells. Plant Sci. 127:207-214. https://doi.org/10.1016/S0168-9452(97)00124-6