DOI QR코드

DOI QR Code

Effects of streambed geomorphology on nitrous oxide flux are influenced by carbon availability

하상 미지형에 따른 N2O 발생량 변화 효과에 대한 탄소 가용성의 영향

  • Ko, Jongmin (Department of Civil Engineering, Yonsei University) ;
  • Kim, Youngsun (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Ji, Un (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Kang, Hojeong (Department of Civil Engineering, Yonsei University)
  • 고종민 (연세대학교 건설환경공학과) ;
  • 김영선 (한국건설기술연구원 국토보전연구본부) ;
  • 지운 (한국건설기술연구원 국토보전연구본부) ;
  • 강호정 (연세대학교 건설환경공학과)
  • Received : 2019.08.09
  • Accepted : 2019.09.30
  • Published : 2019.11.30

Abstract

Denitrification in streams is of great importance because it is essential for amelioration of water quality and accurate estimation of $N_2O$ budgets. Denitrification is a major biological source or sink of $N_2O$, an important greenhouse gas, which is a multi-step respiratory process that converts nitrate ($NO_3{^-}$) to gaseous forms of nitrogen ($N_2$ or $N_2O$). In aquatic ecosystems, the complex interactions of water flooding condition, substrate supply, hydrodynamic and biogeochemical properties modulate the extent of multi-step reactions required for $N_2O$ flux. Although water flow in streambed and residence time affect reaction output, effects of a complex interaction of hydrodynamic, geomorphology and biogeochemical controls on the magnitude of denitrification in streams are still illusive. In this work, we built a two-dimensional water flow channel and measured $N_2O$ flux from channel sediment with different bed geomorphology by using static closed chambers. Two independent experiments were conducted with identical flume and geomorphology but sediment with differences in dissolved organic carbon (DOC). The experiment flume was a circulation channel through which the effluent flows back, and the size of it was $37m{\times}1.2m{\times}1m$. Five days before the experiment began, urea fertilizer (46% N) was added to sediment with the rate of $0.5kg\;N/m^2$. A sand dune (1 m length and 0.15 m height) was made at the middle of channel to simulate variations in microtopography. In high- DOC experiment, $N_2O$ flux increases in the direction of flow, while the highest flux ($14.6{\pm}8.40{\mu}g\;N_2O-N/m^2\;hr$) was measured in the slope on the back side of the sand dune. followed by decreases afterward. In contrast, low DOC sediment did not show the geomorphological variations. We found that even though topographic variation influenced $N_2O$ flux and chemical properties, this effect is highly constrained by carbon availability.

하천의 탈질은 수질 개선과 정확한 아산화질소($N_2O$) 발생량 추정에 관련해서 매우 중요한 역할을 한다. 탈질과정은 질소 산화물($NO_3{^-}$)을 다수의 단계를 걸쳐 기체 질소($N_2$ 또는 $N_2O$)로 변화시키는 호흡과정으로, 강력한 온난화기체인 $N_2O$의 주요한 생물학적 배출 또는 흡수 과정이다. 수생태계에서는, 물의 범람, 기질 공급과 유체역학적, 생지화학적 특성의 복잡한 상호작용이 탈질 과정과 다단계 반응의 정도에 따라 중간산물인 $N_2O$ 발생량(flux)을 조절한다. 이처럼 기질의 농도뿐만 아니라 하상의 물 흐름과 체류시간이 반응 산물에 영향을 미치지만, 하천에서 탈질 정도를 조절하는 유체역학적 특성과 지형학적, 생지 화학적 인자의 상호작용에 대한 연구 결과는 아직 제한적이다. 본 실험은 미세지형 변화의 영향을 모의하기 위해서 2차원 실험 수로에 사구를 형성하여 하상지형에 따라, 정지상태의 폐쇄형 챔버를 이용해 $N_2O$ 발생량을 측정하였다. 또한 기질과의 미세지형의 상호작용을 확인하기 위해서 두 독립된 실험은 같은 수로와 지형 구조를 가지지만 다른 용존 유기탄소(DOC) 농도로 설계하였다. 또한 얻어진 자료를 토대로 Random Forest 모델을 활용하여 $N_2O$ 발생량과 조절인자를 추정하였다. 높은 DOC 농도 실험에선, $N_2O$ 발생량이 흐름 방향을 따라 증가하다 사구 뒤쪽 경사에서 가장 높은 발생량($14.6{\pm}8.40{\mu}g\;N_2O-N/m^2\;hr$)이 측정되며, 그 이후로 감소하는 경향을 보인다. 또한 사구 뒤쪽 경사에서 암모늄 농도가 $31.0{\pm}6.24{\mu}g-N/g\;dry\;soil$로 가장 높으며 $N_2O$ 발생량과 유사한 경향을 나타낸다. 반면에, 낮은 DOC 토양은 지형학적 변화에 따른 $N_2O$ 발생량과 암모늄의 변화를 나타내지 않았으며 발생량과 농도 또한 낮게 나타났다. 따라서 본 실험을 통해 비록 지형적 변화는 $N_2O$ 발생량과 화학적 특성에 영향을 미쳤지만, 그 효과는 탄소 가용성에 의해 제한된다는 것을 확인하였다.

Keywords

References

  1. Ahn, M., Kim, Y., Ji, U., Gu, J., Ko, J., Bae, I., and Kang, H. (2019). "Measurement and analysis of nitrous oxide emissions over time around a dune in the experimental flume." Journal of Korean Society of Environmental Engineers, KSEE, Vol. 41, No. 4, pp. 228-234. https://doi.org/10.4491/KSEE.2019.41.4.228
  2. Arango, C. P., Tank, J. L., Schaller, J. L., Royer, T. V., Bernot, M. J., and David, M. B. (2007). "Benthic organic carbon influences denitrification in streams with high nitrate concentration." Freshwater Biology, Vol. 52, No. 7, pp. 1210-1222. https://doi.org/10.1111/j.1365-2427.2007.01758.x
  3. Bardini, L., Boano, F., Cardenas, M. B., Revelli, R., and Ridolfi, L. (2012). "Nutrient cycling in bedform induced hyporheic zones." Geochimica et Cosmochimica Acta, Vol. 84, pp. 47-61. https://doi.org/10.1016/j.gca.2012.01.025
  4. Baulch, H. M., Schiff, S. L., Maranger, R., and Dillon, P. J. (2011). "Nitrogen enrichment and the emission of nitrous oxide from streams." Global Biogeochemical Cycles, Vol. 25, No. 4.
  5. Boano, F., Demaria, A., Revelli, R., and Ridolfi, L. (2010). "Biogeochemical zonation due to intrameander hyporheic flow." Water Resources Research, Vol. 46, No. 2, pp. 1-13.
  6. Burgin, A. J., and Hamilton, S. K. (2007). "Have we overemphasized in aquatic removal of nitrate the role ecosystems? A review of nitrate removal pathways." Frontiers in Ecology and the Environment, Vol. 5, No. 2, pp. 89-96. https://doi.org/10.1890/1540-9295(2007)5[89:HWOTRO]2.0.CO;2
  7. Cardenas, M. B., Wilson, J. L., and Zlotnik, V. A. (2004). "Impact of heterogeneity, bed forms, and stream curvature on subchannel hyporheic exchange." Water Resources Research, Vol. 40, No. 8, pp. 1-14.
  8. Dahm, C. N., Grimm, N. B., Marmonier, P., Valett, H. M., and Vervier, P. (1998). "Nutrient dynamics at the interface between surface waters and groundwaters." Freshwater Biology, Vol. 40, No. 3, pp. 427-451. https://doi.org/10.1046/j.1365-2427.1998.00367.x
  9. Dong, Z., Zhu, B., Jiang, Y., Tang, J., Liu, W., and Hu, L. (2018). "Seasonal $N_2O$ emissions respond differently to environmental and microbial factors after fertilization in wheat-maize agroecosystem." Nutrient Cycling in Agroecosystems, Vol. 112, No. 2, pp. 215-229. https://doi.org/10.1007/s10705-018-9940-8
  10. Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schultz, M., and Van Dorland, R. (2007). Changes in atmospheric constituents and in radiative forcing. Chapter 2. In: Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group.
  11. Gaimster, H., Alston, M., Richardson, D. J., Gates, A. J., and Rowley, G. (2018). "Transcriptional and environmental control of bacterial denitrification and $N_2O$ emissions." FEMS Microbiology Letters, Vol. 365, No. 5, pp. 1-8.
  12. Garcia-Ruiz, R., Pattinson, S. N., and Whitton, B. A. (1999). "Nitrous oxide production in the river Swale-Ouse, North-East England." Water Research, Vol. 33, No. 5, pp. 1231-1237. https://doi.org/10.1016/S0043-1354(98)00324-8
  13. Groffman, P. M., Gold, A. J., and Addy, K. (2000). "Nitrous oxide production in riparian zones and its importance to national emission inventories." Chemosphere-Global Change Science, Vol. 2, No. 3-4, pp. 291-299. https://doi.org/10.1016/S1465-9972(00)00018-0
  14. Harvey, J. W., Bohlke, J. K., Voytek, M. A., Scott, D., and Tobias, C. R. (2013). "Hyporheic zone denitrification: Controls on effective reaction depth and contribution to whole-stream mass balance." Water Resources Research, Vol. 49, No. 10, pp. 6298-6316. https://doi.org/10.1002/wrcr.20492
  15. Hasegawa, K., Hanaki, K., Matsuo, T., and Hidaka, S. (2000). "Nitrous oxide from the agricultural water system contaminated with high nitrogen." Chemosphere-Global Change Science, Vol. 2, No. 3-4, pp. 335-345. https://doi.org/10.1016/S1465-9972(00)00009-X
  16. Hu, M., Chen, D., and Dahlgren, R. A. (2016). "Modeling nitrous oxide emission from rivers: a global assessment." Global Change Biology, Vol. 22, No. 11, pp. 3566-3582. https://doi.org/10.1111/gcb.13351
  17. Hudson, F. (2006). RSKSOP-175: Sample preparation and calculation for dissolved gas analysis in water samples using a GC headspace equilibration technique. U.S. Environmental Protection Agency, Vol. 2, No. RSKSOP-175, p. 1 of 14.
  18. Jin, Z., Zheng, Q., Zhu, C., Wang, Y., Cen, J., and Li, F. (2018). "Contribution of nitrate sources in surface water in multiple land use areas by combining isotopes and a Bayesian isotope mixing model." Applied Geochemistry, Vol. 93, pp. 10-19. https://doi.org/10.1016/j.apgeochem.2018.03.014
  19. Jurado, A., Borges, A. V., and Brouyere, S. (2017). "Dynamics and emissions of N2O in groundwater: A review." Science of the Total Environment, Vol. 584-585, pp. 207-218. https://doi.org/10.1016/j.scitotenv.2017.01.127
  20. Kemp, M. J., and Dodds, W. K. (2002). "Comparisons of nitrification and denitrification in prairie and agriculturally influenced streams." Ecological Applications, Vol. 12, No. 4, pp. 998-1009. https://doi.org/10.1890/1051-0761(2002)012[0998:CONADI]2.0.CO;2
  21. Korner, H., and Zumft, W. G. (1989). "Expression of denitrification enzymes in response to the dissolved oxygen levels and respiratory substrate in continuous culture of Pseudomonas stutzeri." Applied and Environmental Microbiology, Vol. 55, No. 7, pp. 1670-1676. https://doi.org/10.1128/AEM.55.7.1670-1676.1989
  22. Kuypers, M. M. M., Marchant, H. K., and Kartal, B. (2018). "The microbial nitrogen-cycling network." Nature Reviews Microbiology, Vol. 16, No. 5, pp. 263-276. https://doi.org/10.1038/nrmicro.2018.9
  23. Lan, Z. M., Chen, C. R., Rashti, M. R., Yang, H., and Zhang, D. K. (2017). "Stoichiometric ratio of dissolved organic carbon to nitrate regulates nitrous oxide emission from the biochar-amended soils." Science of the Total Environment, Vol. 576, pp. 559-571. https://doi.org/10.1016/j.scitotenv.2016.10.119
  24. Li, C., Li, S. L., Yue, F. J., Liu, J., Zhong, J., Yan, Z. F., Zhang, R. C., Wang, Z. J., and Xu, S. (2019). "Identification of sources and transformations of nitrate in the Xijiang River using nitrate isotopes and Bayesian model." Science of the Total Environment, Vol. 646, pp. 801-810. https://doi.org/10.1016/j.scitotenv.2018.07.345
  25. Liu, L., and Greaver, T. L. (2009). "A review of nitrogen enrichment effects on three biogenic GHGs: The CO2sink may be largely offset by stimulated N2O and CH4emission." Ecology Letters, Vol. 12, No. 10, pp. 1103-1117. https://doi.org/10.1111/j.1461-0248.2009.01351.x
  26. Marzadri, A., Tonina, D., Bellin, A., and Tank, J. L. (2014). "A hydrologic model demonstrates nitrous oxide emissions depend on streambed morphology." Geophysical Research Letters, Vol. 41, No. 15, pp. 5484-5491. https://doi.org/10.1002/2014GL060732
  27. Mosier, A., and Kroeze, C. (2000). "Potential impact on the global atmospheric $N_2O$ budget of the increased nitrogen input required to meet future global food demands." Chemosphere-Global Change Science, Vol. 2, No. 3-4, pp. 465-473. https://doi.org/10.1016/S1465-9972(00)00039-8
  28. Mulholland, P. J., Helton, A. M., Poole, G. C., Hall, R. O., Hamilton, S. K., Peterson, B. J., Tank, J. L., Ashkenas, L. R., Cooper, L. W., Dahm, C. N., Dodds, W. K., Findlay, S. E., Gregory, S. V., Grimm, N. B., Johnson, S. L., McDowell, W. H., Meyer, J. L., Valett, H. M., Webster, J. R., Arango, C. P., Beaulieu, J. J., Bernot, M. J., Burgin, A. J., Crenshaw, C. L., Johnson, L. T., Niederlehner, B. R., O'Brien, J. M., Potter, J. D., Sheibley, R. W., Sobota, D. J., and Thomas, S. M. (2008). "Stream denitrification across biomes and its response to anthropogenic nitrate loading." Nature, Vol. 452, No. 7184, pp. 202-205. https://doi.org/10.1038/nature06686
  29. Paul, E. A. (2007). Soil microbiology, ecology, andbiochemistry. Academic, California, p. 340.
  30. Quick, A. M., Reeder, W. J., Farrell, T. B., Tonina, D., Feris, K. P., and Benner, S. G. (2016). "Controls on nitrous oxide emissions from the hyporheic zones of streams." Environmental Science and Technology, Vol. 50, No. 21, pp. 11491-11500. https://doi.org/10.1021/acs.est.6b02680
  31. Quick, A. M., Reeder, W. J., Farrell, T. B., Tonina, D., Feris, K. P., and Benner, S. G. (2019). "Nitrous oxide from streams and rivers: A review of primary biogeochemical pathways and environmental variables." Earth-Science Reviews, Vol. 191, pp. 224-262. https://doi.org/10.1016/j.earscirev.2019.02.021
  32. Saleh-Lakha, S., Shannon, K. E., Henderson, S. L., Zebarth, B. J., Burton, D. L., Goyer, C., and Trevors, J. T. (2009). "Effect of nitrate and acetylene on nirS, cnorB, and nosZ expression and denitrification activity in Pseudomonas mandelii." Applied and Environmental Microbiology, Vol. 75, No. 15, pp. 5082-5087. https://doi.org/10.1128/AEM.00777-09
  33. Sanchez, D. A., Szynkiewicz, A., and Faiia, A. M. (2017). "Determining sources of nitrate in the semi-arid Rio Grande using nitrogen and oxygen isotopes." Applied Geochemistry, Vol. 86, pp. 59-69. https://doi.org/10.1016/j.apgeochem.2017.09.012
  34. Schreiber, F., Wunderlin, P., Udert, K. M., and Wells, G. F. (2012). "Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: Biological pathways, chemical reactions, and novel technologies." Frontiers in Microbiology, Vol. 3, pp. 1-24. https://doi.org/10.3389/fmicb.2012.00001
  35. Seitzinger, S. P., Harrison, J. A., Bohlke, J. K., Bouwman, A. F., Lowrance, R. R., Peterson, B. J., Tobias, C. R., and van Drecht, G. (2006). "Denitrification across landscapes and waterscapes: A synthesis." Ecological Applications, Vol. 16, No. 6, pp. 2064-2090. https://doi.org/10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2
  36. Shen, Q. R., Ran, W., and Cao, Z. H. (2003). "Mechanisms of nitrite accumulation occurring in soilnitrification." Chemosphere, Vol. 50, No. 6, pp. 747-753. https://doi.org/10.1016/S0045-6535(02)00215-1
  37. Stein, L. Y., and Klotz, M. G. (2016). "The nitrogen cycle." Current Biology, Vol. 26, No. 3, pp. R94-R98. https://doi.org/10.1016/j.cub.2015.12.021
  38. Sutton, M. A., Nemitz, E., Erisman, J. W., Beier, C., Bahl, K. B., Cellier, P., de Vries, W., Cotrufo, F., Skiba, U., Di Marco, C., Jones, S., Laville, P., Soussana, J. F., Loubet, B., Twigg, M., Famulari, D., Whitehead, J., Gallagher, M. W., Neftel, A., Flechard, C. R., Herrmann, B., Calanca, P. L., Schjoerring, J. K., Daemmgen, U., Horvath, L., Tang, Y. S., Emmett, B. A., Tietema, A., Penuelas, J., Kesik, M., Brueggemann, N., Pilegaard, K., Vesala, T., Campbell, C. L., Olesen, J. E., Dragosits, U., Theobald, M. R., Levya, P., Mobbs, D. C., Milne, R., Viovy, N., Vuichard, N., Smith, J. U., Smith,. P., Bergamaschi, P., Fowler, D., and Reis, S. (2007). "Challenges in quantifying biosphere-atmosphere exchange of nitrogen species." Environmental Pollution, Vol. 150, No. 1, pp. 125-139. https://doi.org/10.1016/j.envpol.2007.04.014
  39. Teixeira, C., Magalhaes, C., Boaventura, R. A. R., and Bordalo, A. A. (2010). "Potential rates and environmental controls of denitrification and nitrous oxide production in a temperate urbanized estuary." Marine Environmental Research, Vol. 70, No. 5, pp. 336-342. https://doi.org/10.1016/j.marenvres.2010.07.001
  40. Tsuneda, S., Ohno, T., Soejima, K., and Hirata, A. (2006). "Simultaneous nitrogen and phosphorus removal using denitrifying phosphateaccumulating organisms in a sequencing batch reactor." Biochemical Engineering Journal, Vol. 27, No. 3, pp. 191-196. https://doi.org/10.1016/j.bej.2005.07.004
  41. Wang, Q., Liu, Y. R., Zhang, C. J., Zhang, L. M., Han, L. L., Shen, J. P., and He, J. Z. (2017b). "Responses of soil nitrous oxide production and abundances and composition of associated microbial communities to nitrogen and water amendment." Biology and Fertility of Soils, Vol. 53, No. 6, pp. 601-611. https://doi.org/10.1007/s00374-017-1203-3
  42. Wang, Y., Cao, W., Zhang, X., and Guo, J. (2017a). "Abiotic nitrate loss and nitrogenous trace gas emission from Chinese acidic forest soils." Environmental Science and Pollution Research, Vol. 24, No. 28, pp. 22679-22687. https://doi.org/10.1007/s11356-017-9797-4
  43. Wang, Z., Meng, Y., Fan, T., Du, Y., Tang, J., and Fan, S. (2015). "Phosphorus removal and $N_2O$ production in anaerobic/anoxic denitrifying phosphorus removal process: Long-term impact of influent phosphorus concentration." Bioresource Technology, Vol. 179, pp. 585-594. https://doi.org/10.1016/j.biortech.2014.12.016
  44. Wrage, N., Velthof, G. L., Van Beusichem, M. L., and Oenema, O. (2001). "Role of nitrifier denitrification in the production of nitrous oxide." Soil Biology and Biochemistry, Vol. 33, No. 12-13, pp. 1723-1732. https://doi.org/10.1016/S0038-0717(01)00096-7
  45. Zhu, X., Burger, M., Doane, T. A., and Horwath, W. R. (2013). "Ammonia oxidation pathways and nitrifier denitrification are significant sources of $N_2O$ and NO under low oxygen availability." Proceedings of the National Academy of Sciences, Vol. 110, No. 16, pp. 6328-6333. https://doi.org/10.1073/pnas.1219993110
  46. Zumft, W. G., and Kroneck, P. M. H. (2006). "Respiratory Transformation of Nitrous Oxide ($N_2O$) to Dinitrogen by Bacteria and Archaea." Advances in Microbial Physiology, No. 52, pp. 107-227.