DOI QR코드

DOI QR Code

Thickness Effect of SiOx Layer Inserted between Anti-Reflection Coating and p-n Junction on Potential-Induced Degradation (PID) of PERC Solar Cells

PERC 태양전지에서 반사방지막과 p-n 접합 사이에 삽입된 SiOx 층의 두께가 Potential-Induced Degradation (PID) 저감에 미치는 영향

  • Jung, Dongwook (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Oh, Kyoung-suk (New & Renewable Energy Research Center, Korea Electronics Technology Institute) ;
  • Jang, Eunjin (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Chan, Sung-il (New & Renewable Energy Research Center, Korea Electronics Technology Institute) ;
  • Ryu, Sangwoo (Department of Advanced Materials Engineering, Kyonggi University)
  • 정동욱 (경기대학교 신소재공학과) ;
  • 오경석 (전자부품연구원 신재생에너지연구센터) ;
  • 장은진 (경기대학교 신소재공학과) ;
  • 천성일 (전자부품연구원 신재생에너지연구센터) ;
  • 유상우 (경기대학교 신소재공학과)
  • Received : 2019.09.06
  • Accepted : 2019.09.27
  • Published : 2019.09.30

Abstract

Silicon solar cells have been widely used as a most promising renewable energy source due to eco-friendliness and high efficiency. As modules of silicon solar cells are connected in series for a practical electricity generation, a large voltage of 500-1,500 V is applied to the modules inevitably. Potential-induced degradation (PID), a deterioration of the efficiency and maximum power output by the continuously applied high voltage between the module frames and solar cells, has been regarded as the major cause that reduces the lifetime of silicon solar cells. In particular, the migration of the $Na^+$ ions from the front glass into Si through the anti-reflection coating and the accumulation of $Na^+$ ions at stacking faults inside Si have been reported as the reason of PID. In this research, the thickness effect of $SiO_x$ layer that can block the migration of $Na^+$ ions on the reduction of PID is investigated as it is incorporated between anti-reflection coating and p-n junction in p-type PERC solar cells. From the measurement of shunt resistance, efficiency, and maximum power output after the continuous application of 1,000 V for 96 hours, it is revealed that the thickness of $SiO_x$ layer should be larger than 7-8 nm to reduce PID effectively.

친환경 및 고효율의 장점 때문에 신재생 에너지원으로 널리 사용되고 있는 실리콘 태양 전지는 모듈을 직렬 연결하여 발전할 때 500-1,500 V의 전압이 걸리게 된다. 모듈 프레임과 태양 전지 사이에 걸린 이러한 고전압 차에 의해 장시간 가동시 효율 및 최대 출력이 감소하는 현상인 potential-induced degradation(PID)은 실리콘 태양 전지의 수명을 단축시키는 주요 원인 중 하나로 알려져 있다. 특별히 전면 유리의 $Na^+$ 이온이 고전압에 의해 반사방지막을 거쳐 실리콘 내부로 확산하여 실리콘 내부 적층 결함 등에 축적되는 것이 PID의 원인으로 보고되고 있다. 본 연구에서는 p-형 PERC(passivated emitter and rear contact) 구조 실리콘 태양전지를 대상으로 $Na^+$ 이온의 확산 장벽으로 작용할 수 있는 $SiO_x$층이 p-n 접합과 반사방지막 사이에 삽입되었을 때 그 두께가 PID 현상 완화에 미치는 영향을 연구하였다. 96 시간 동안 1,000 V의 전압을 연속적으로 가한 후 병렬 저항, 효율 및 최대 출력을 측정한 결과 삽입된 $SiO_x$ 장벽층의 두께가 7-8 nm 이상일 때 비로소 PID 현상이 효과적으로 완화되는 것으로 나타났다.

Keywords

References

  1. J. H. Hwang, "Renewable energy supply such as solar light in the first half of this year 52% ${\uparrow}$ than last year", The Korean Broadcasting System, (Jul. 31, 2019) from http://news.kbs.co.kr/news/view.do?ncd=4244113&ref=A
  2. V. Naumann, C. Brzuska, M. Werner, S. Grober, and C. Hagendorf, "Investigations on the Formation of Stacking Fault like PID-shunt", Energy Procedia, 92, 569 (2016). https://doi.org/10.1016/j.egypro.2016.07.021
  3. K. Sporleder, V. Naumann, J. Bauer, S. Richter, A. Hähnel, S. Grosser, M. Turek, and C. Hagendorf, "Microstructural Analysis of Local Silicon Corrosion of Bifacial Solar Cells as Root Cause of Potential-Induced Degradation at the Rear Side", Phys. Status Solidi A, 1900334 (2019).
  4. Y. Ohno, H. Morito, K. Kutsukake, I. Yonenaga, T. Yokoi, A. Nakamura, and K. Matsunaga, "Interaction of sodium atoms with stacking faults in silicon with different Fermi levels", Appl. Phys. Express., 11(6), 061303 (2018). https://doi.org/10.7567/APEX.11.061303
  5. V. Naumann, D. Laush, A. Hahnel, J Bauer, O. Breitenstein, A. Graff, M. Werner, S. Swatek, S. Grosser, J. Bagdahn, and C. Hagendorf, "Explanation of potential-induced degradation of the shunting type by Na decoration of stacking faults in Si solar cell", Sol. Energ. Mat. Sol. C., 120, 383 (2014). https://doi.org/10.1016/j.solmat.2013.06.015
  6. V. Naumann, D. Lausch, S. Grosser, M. Werner, S. Swatek, C. Hagendorf, and J. Bagdahn, "Microstructural Analysis of Crystal Defects Leading to Potential-Induced Degradation (PID) of Si Solar Cells", Energy Procedia, 33, 76 (2013). https://doi.org/10.1016/j.egypro.2013.05.042
  7. S. S. Baik, S. Y. Baek, T. W. Jung, and J. H. Cho, "A Study on Validity of Anti-PID Technology on Solar Cell for the High Reliability of Photovoltaics System", J. Soc. Korea Ind. Syst. Eng., 36(2), 32 (2013). https://doi.org/10.11627/jkise.2013.36.2.32
  8. P. Saint-Cast, H. Nagel, D. Wagenmann, J. Schon, P. Schmitt, C. Reichel, S. W. Glunz, M. Hofmann, J. Rentsch, and R. Preu, "Potential-induced degradation on cell level: The inversion model", Proc. 28th European PV Solar Energy Conference and Exhibition, Paris, France (2013).
  9. C. Taubitz, M. Schutze, and M. B. Koentopp, "Towards a kinetic model of potential-induced shunting", Proc. 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt, Germany, 3172 (2012).
  10. H. B. Kim, T. H. Jung, G. H. Kang, and H. S. Chang, "The Effect of PID Generation by Components of the PV Module", J. Korean Inst. Electr. Electron. Mater. Eng., 26, 760 (2013). https://doi.org/10.4313/JKEM.2013.26.10.760
  11. B. Ziebarth, M. Mrovec, C. Elsässer, and P. Gumbsch, "Potential-induced degradation in solar cells: Electronic structure and diffusion mechanism of sodium in stacking faults of silicon", J. Appl. Phys., 116, 093510 (2014). https://doi.org/10.1063/1.4894007
  12. S. H. Bae, W. W. Oh, S. M. Kim, Y. D. Kim, S. G. Park, Y. M. Kang, H. S. Lee, and D. W. Kim, "Potential Induced Degradation (PID) of Crystalline Silicon Solar Modules", Korean J. Mater. Res., 24(6), 326 (2014). https://doi.org/10.3740/MRSK.2014.24.6.326
  13. J. Oh, B. Dauksher, S. Bowden, G. Tamizhmani, P. Hacke, and J. D' Amico, "Further Studies on the Effect of $SiN_x$ Refractive Index and Emitter Sheet Resistance on Potential-Induced Degradation", IEEE J. Photovolt., 7(2), 437 (2017). https://doi.org/10.1109/JPHOTOV.2016.2642952
  14. X. Gou, X. Li, S. Zhou, S. Wang, W. Fan, and Q. Huang, "PID Testing Method Suitable for Process Control of Solar Cells Mass Production", Int. J. Photoenergy., 2015, 863248 (2015).
  15. D. Lausch, V. Naumann, O. Breitenstein, J. Bauer, A. Graff, J. Bagdahn, and C. Hagendorf, "Potential-Induced Degradation (PID): Introduction of a Novel Test Approach and Explanation of Increased Depletion Region Recombination", IEEE J. Photovolt., 4, 834 (2014). https://doi.org/10.1109/JPHOTOV.2014.2300238
  16. W. Luo, Y. S. Khoo, P. Hacke, V. Naumann, D. Lausch, S. Harvey, J. P. Singh, J. Chai, Y. Wang, A. Aberle, and S. Ramakrishna, "Potential-induced degradation in photovoltaic modules: a critical review", Energy Environ. Sci., 10(1), 43 (2017). https://doi.org/10.1039/C6EE02271E
  17. C. -S. Jiang, C. Xiao, H. R. Moutinho, S. Johnston, M. M. Al-Jassim, X. Yang, Y. Chen, and J. Ye, "Imaging Charge Carriers in Potential-Induced Degradation Defects of c-Si Solar Cells by Scanning Capacitance Microscopy", Sol. Energy., 162, 330 (2018). https://doi.org/10.1016/j.solener.2017.12.025
  18. K. S. Oh, S. H. Bae, K. J. Lee, D. H. Kim, and S. I. Chan, "Mitigation of potential-induced degradation (PID) based on anti-reflection coating (ARC) structures of PERC solar cells", Microelectronics Reliability, 113462 (2019).
  19. D. L. King, B. R. Hansen, J. A. Kratochvil, and M. A. Quintana, "Dark current-voltage measurements on photovoltaic modules as a diagnostic or manufacturing tool", Proc. 26th Photovoltaic Specialists Conference 1997 (PVSC), IEEE (1997).
  20. S. J. Jeong, S. M. Kim, Y. M. Kang, H. S. Lee, and D. H. Kim, "Use of a Transformed Diode Equation for Characterization of the Ideality Factor and Series Resistance of crystalline Silicon Solar Cells Based on Light I-V Curves", Korean J. Mater. Res., 26(8), 422 (2016). https://doi.org/10.3740/MRSK.2016.26.8.422
  21. G. K. Chang, Y. K. Lim, and J. C. Jeong, "Textured Surface Epitaxial Base Silicon Solar cell", J. Microelectron. Packag. Soc., 10(2), 33 (2003).
  22. K. R. McIntosh, and C. B. Honsberg, "The Influence of Edge Recombination on a Solar Cell's IV Curve", Proc. 16th European Photovoltaic Solar Energy Conference (EU PVSEC), Australia, 2052 (2000).
  23. E. L. Meyer, "Extraction of Saturation Current and Ideality Factor from Measuring Voc and Isc of Photovoltaic Modules", International Journal of Photoenergy, 2017, 8479487 (2017). https://doi.org/10.1155/2017/8479487
  24. I. Martil, and G. Diaz, "Determination of the dark and illuminated characteristic parameters of a solar cell from I-V characteristics", Eur. J. Phys., 13, 193 (1992). https://doi.org/10.1088/0143-0807/13/4/009
  25. J. Zhao, A. Wang, X. Dai, M. A. Green, and S. R. Wenham, "Improvements in Silicon Solar Cell Performance", Proc. 22nd Photovoltaic Specialists Conference (PVSC), IEEE (1991).
  26. H. G. Hong, and J. Y. Heo, "Study on the Passivation of Si Surface by Incorporation of Nitrogen in $Al_2O_3$ Thin Films Grown by Atomic Layer Deposition", J. Microelectron. Packag. Soc., 22(4), 111 (2015). https://doi.org/10.6117/kmeps.2015.22.4.111