Browse > Article
http://dx.doi.org/10.6117/kmeps.2019.26.3.075

Thickness Effect of SiOx Layer Inserted between Anti-Reflection Coating and p-n Junction on Potential-Induced Degradation (PID) of PERC Solar Cells  

Jung, Dongwook (Department of Advanced Materials Engineering, Kyonggi University)
Oh, Kyoung-suk (New & Renewable Energy Research Center, Korea Electronics Technology Institute)
Jang, Eunjin (Department of Advanced Materials Engineering, Kyonggi University)
Chan, Sung-il (New & Renewable Energy Research Center, Korea Electronics Technology Institute)
Ryu, Sangwoo (Department of Advanced Materials Engineering, Kyonggi University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.26, no.3, 2019 , pp. 75-80 More about this Journal
Abstract
Silicon solar cells have been widely used as a most promising renewable energy source due to eco-friendliness and high efficiency. As modules of silicon solar cells are connected in series for a practical electricity generation, a large voltage of 500-1,500 V is applied to the modules inevitably. Potential-induced degradation (PID), a deterioration of the efficiency and maximum power output by the continuously applied high voltage between the module frames and solar cells, has been regarded as the major cause that reduces the lifetime of silicon solar cells. In particular, the migration of the $Na^+$ ions from the front glass into Si through the anti-reflection coating and the accumulation of $Na^+$ ions at stacking faults inside Si have been reported as the reason of PID. In this research, the thickness effect of $SiO_x$ layer that can block the migration of $Na^+$ ions on the reduction of PID is investigated as it is incorporated between anti-reflection coating and p-n junction in p-type PERC solar cells. From the measurement of shunt resistance, efficiency, and maximum power output after the continuous application of 1,000 V for 96 hours, it is revealed that the thickness of $SiO_x$ layer should be larger than 7-8 nm to reduce PID effectively.
Keywords
potential-induced degradation; $Na^+$ ion migration; PERC; silicon solar cell; shunt resistance;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 X. Gou, X. Li, S. Zhou, S. Wang, W. Fan, and Q. Huang, "PID Testing Method Suitable for Process Control of Solar Cells Mass Production", Int. J. Photoenergy., 2015, 863248 (2015).
2 D. Lausch, V. Naumann, O. Breitenstein, J. Bauer, A. Graff, J. Bagdahn, and C. Hagendorf, "Potential-Induced Degradation (PID): Introduction of a Novel Test Approach and Explanation of Increased Depletion Region Recombination", IEEE J. Photovolt., 4, 834 (2014).   DOI
3 W. Luo, Y. S. Khoo, P. Hacke, V. Naumann, D. Lausch, S. Harvey, J. P. Singh, J. Chai, Y. Wang, A. Aberle, and S. Ramakrishna, "Potential-induced degradation in photovoltaic modules: a critical review", Energy Environ. Sci., 10(1), 43 (2017).   DOI
4 C. -S. Jiang, C. Xiao, H. R. Moutinho, S. Johnston, M. M. Al-Jassim, X. Yang, Y. Chen, and J. Ye, "Imaging Charge Carriers in Potential-Induced Degradation Defects of c-Si Solar Cells by Scanning Capacitance Microscopy", Sol. Energy., 162, 330 (2018).   DOI
5 K. S. Oh, S. H. Bae, K. J. Lee, D. H. Kim, and S. I. Chan, "Mitigation of potential-induced degradation (PID) based on anti-reflection coating (ARC) structures of PERC solar cells", Microelectronics Reliability, 113462 (2019).
6 D. L. King, B. R. Hansen, J. A. Kratochvil, and M. A. Quintana, "Dark current-voltage measurements on photovoltaic modules as a diagnostic or manufacturing tool", Proc. 26th Photovoltaic Specialists Conference 1997 (PVSC), IEEE (1997).
7 S. J. Jeong, S. M. Kim, Y. M. Kang, H. S. Lee, and D. H. Kim, "Use of a Transformed Diode Equation for Characterization of the Ideality Factor and Series Resistance of crystalline Silicon Solar Cells Based on Light I-V Curves", Korean J. Mater. Res., 26(8), 422 (2016).   DOI
8 G. K. Chang, Y. K. Lim, and J. C. Jeong, "Textured Surface Epitaxial Base Silicon Solar cell", J. Microelectron. Packag. Soc., 10(2), 33 (2003).
9 E. L. Meyer, "Extraction of Saturation Current and Ideality Factor from Measuring Voc and Isc of Photovoltaic Modules", International Journal of Photoenergy, 2017, 8479487 (2017).   DOI
10 I. Martil, and G. Diaz, "Determination of the dark and illuminated characteristic parameters of a solar cell from I-V characteristics", Eur. J. Phys., 13, 193 (1992).   DOI
11 J. Zhao, A. Wang, X. Dai, M. A. Green, and S. R. Wenham, "Improvements in Silicon Solar Cell Performance", Proc. 22nd Photovoltaic Specialists Conference (PVSC), IEEE (1991).
12 H. G. Hong, and J. Y. Heo, "Study on the Passivation of Si Surface by Incorporation of Nitrogen in $Al_2O_3$ Thin Films Grown by Atomic Layer Deposition", J. Microelectron. Packag. Soc., 22(4), 111 (2015).   DOI
13 K. R. McIntosh, and C. B. Honsberg, "The Influence of Edge Recombination on a Solar Cell's IV Curve", Proc. 16th European Photovoltaic Solar Energy Conference (EU PVSEC), Australia, 2052 (2000).
14 Y. Ohno, H. Morito, K. Kutsukake, I. Yonenaga, T. Yokoi, A. Nakamura, and K. Matsunaga, "Interaction of sodium atoms with stacking faults in silicon with different Fermi levels", Appl. Phys. Express., 11(6), 061303 (2018).   DOI
15 J. H. Hwang, "Renewable energy supply such as solar light in the first half of this year 52% ${\uparrow}$ than last year", The Korean Broadcasting System, (Jul. 31, 2019) from http://news.kbs.co.kr/news/view.do?ncd=4244113&ref=A
16 V. Naumann, C. Brzuska, M. Werner, S. Grober, and C. Hagendorf, "Investigations on the Formation of Stacking Fault like PID-shunt", Energy Procedia, 92, 569 (2016).   DOI
17 K. Sporleder, V. Naumann, J. Bauer, S. Richter, A. Hähnel, S. Grosser, M. Turek, and C. Hagendorf, "Microstructural Analysis of Local Silicon Corrosion of Bifacial Solar Cells as Root Cause of Potential-Induced Degradation at the Rear Side", Phys. Status Solidi A, 1900334 (2019).
18 V. Naumann, D. Laush, A. Hahnel, J Bauer, O. Breitenstein, A. Graff, M. Werner, S. Swatek, S. Grosser, J. Bagdahn, and C. Hagendorf, "Explanation of potential-induced degradation of the shunting type by Na decoration of stacking faults in Si solar cell", Sol. Energ. Mat. Sol. C., 120, 383 (2014).   DOI
19 S. S. Baik, S. Y. Baek, T. W. Jung, and J. H. Cho, "A Study on Validity of Anti-PID Technology on Solar Cell for the High Reliability of Photovoltaics System", J. Soc. Korea Ind. Syst. Eng., 36(2), 32 (2013).   DOI
20 V. Naumann, D. Lausch, S. Grosser, M. Werner, S. Swatek, C. Hagendorf, and J. Bagdahn, "Microstructural Analysis of Crystal Defects Leading to Potential-Induced Degradation (PID) of Si Solar Cells", Energy Procedia, 33, 76 (2013).   DOI
21 P. Saint-Cast, H. Nagel, D. Wagenmann, J. Schon, P. Schmitt, C. Reichel, S. W. Glunz, M. Hofmann, J. Rentsch, and R. Preu, "Potential-induced degradation on cell level: The inversion model", Proc. 28th European PV Solar Energy Conference and Exhibition, Paris, France (2013).
22 C. Taubitz, M. Schutze, and M. B. Koentopp, "Towards a kinetic model of potential-induced shunting", Proc. 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt, Germany, 3172 (2012).
23 H. B. Kim, T. H. Jung, G. H. Kang, and H. S. Chang, "The Effect of PID Generation by Components of the PV Module", J. Korean Inst. Electr. Electron. Mater. Eng., 26, 760 (2013).   DOI
24 B. Ziebarth, M. Mrovec, C. Elsässer, and P. Gumbsch, "Potential-induced degradation in solar cells: Electronic structure and diffusion mechanism of sodium in stacking faults of silicon", J. Appl. Phys., 116, 093510 (2014).   DOI
25 S. H. Bae, W. W. Oh, S. M. Kim, Y. D. Kim, S. G. Park, Y. M. Kang, H. S. Lee, and D. W. Kim, "Potential Induced Degradation (PID) of Crystalline Silicon Solar Modules", Korean J. Mater. Res., 24(6), 326 (2014).   DOI
26 J. Oh, B. Dauksher, S. Bowden, G. Tamizhmani, P. Hacke, and J. D' Amico, "Further Studies on the Effect of $SiN_x$ Refractive Index and Emitter Sheet Resistance on Potential-Induced Degradation", IEEE J. Photovolt., 7(2), 437 (2017).   DOI