DOI QR코드

DOI QR Code

A Study of Lens Design Technique for Proximity Exposure Using a UVA LED

UVA LED를 이용한 근접 노광용 렌즈 설계 기술 연구

  • Lee, Jeong-Su (Department of Nano-optical Engineering, Korea Polytechnic University) ;
  • Jo, Ye-Ji (Department of Nano-optical Engineering, Korea Polytechnic University) ;
  • Lee, Hyun-Hwa (Department of Nano-optical Engineering, Korea Polytechnic University) ;
  • Kong, Mi-Seon (Department of Nano-optical Engineering, Korea Polytechnic University) ;
  • Kang, Dong-Hwa (Department of Nano-optical Engineering, Korea Polytechnic University) ;
  • Jung, Mee-Suk (Department of Nano-optical Engineering, Korea Polytechnic University)
  • 이정수 (한국산업기술대학교 나노-광공학과) ;
  • 조예지 (한국산업기술대학교 나노-광공학과) ;
  • 이현화 (한국산업기술대학교 나노-광공학과) ;
  • 공미선 (한국산업기술대학교 나노-광공학과) ;
  • 강동화 (한국산업기술대학교 나노-광공학과) ;
  • 정미숙 (한국산업기술대학교 나노-광공학과)
  • Received : 2019.05.16
  • Accepted : 2019.06.05
  • Published : 2019.08.25

Abstract

The exposure system is a device that transfers a circuit pattern to a desired location. To display patterns on a substrate without deforming the optical characteristics, the characteristics of the optical exposure system are very important. Therefore, to form a microcircuit pattern, a small divergence angle should impinge on the irradiation area. Also, since the light from the source must react uniformly with the photosensitizer, it must have high luminance efficiency and uniformity of illumination. In this paper a parabolic reflector and an aspherical lens were designed to solve the problem of narrow-angle implementation, and it was confirmed by simulation analysis after their arrangement that the beam angle, uniformity, and maximum illuminance satisfied the target performance.

노광기는 회로 패턴을 원하는 위치에 전사시켜주는 장비로 패턴을 광학적 특성의 변형 없이 기재 상에 나타내기 위해서는 노광광학계의 특성이 매우 중요하다. 따라서 미세회로 패턴을 형성하기 위해서는 조사 면적에 작은 발산각으로 입사되어야 한다. 또한, 광원에서 나온 빛이 감광제와 균일하게 반응해야 하기 때문에 높은 광효율과 조도 균일도를 가져야 한다. 본 논문에서는 협각 구현의 문제점을 해결하기 위한 방법으로 반사형 타입인 파라볼라 반사경과 비구면 렌즈 설계를 진행하였고, 배열 후 시뮬레이션 분석 결과 광속 각도, 균일도, 최대조도가 목표 성능을 만족하는 것을 확인하였다.

Keywords

KGHHBU_2019_v30n4_146_f0001.png 이미지

Fig. 1. Proximity exposure.

KGHHBU_2019_v30n4_146_f0002.png 이미지

Fig. 2. Layout of the optical exposure system.

KGHHBU_2019_v30n4_146_f0003.png 이미지

Fig. 3. LEUV-V518A6 LED of LG Innotek.

KGHHBU_2019_v30n4_146_f0004.png 이미지

Fig. 4. UVA LED light distribution.

KGHHBU_2019_v30n4_146_f0005.png 이미지

Fig. 5. Spectral transmissivity and refractive index of MS-1002 Moldable Silicone.

KGHHBU_2019_v30n4_146_f0006.png 이미지

Fig. 6. Analysis of the luminous intensity with a single lens.

KGHHBU_2019_v30n4_146_f0007.png 이미지

Fig. 7. Analysis of the luminance efficiency with a single lens.

KGHHBU_2019_v30n4_146_f0008.png 이미지

Fig. 8. Total internal reflection lens.

KGHHBU_2019_v30n4_146_f0009.png 이미지

Fig. 9. Analysis of the lens interval.

KGHHBU_2019_v30n4_146_f0010.png 이미지

Fig. 10. Beam layout of the arranged total internal reflection lens.

KGHHBU_2019_v30n4_146_f0011.png 이미지

Fig. 11. Parabolic reflector.

KGHHBU_2019_v30n4_146_f0012.png 이미지

Fig. 12. Diameter of the parabolic reflector.

KGHHBU_2019_v30n4_146_f0013.png 이미지

Fig. 13. Focal length of the parabolic reflector.

KGHHBU_2019_v30n4_146_f0014.png 이미지

Fig. 14. Uncontrolled ray at the parabolic reflector.

KGHHBU_2019_v30n4_146_f0015.png 이미지

Fig. 15. Diagram of the aspherical lens.

KGHHBU_2019_v30n4_146_f0016.png 이미지

Fig. 17. Simulation results of the parabolic reflector and aspherical lens.

KGHHBU_2019_v30n4_146_f0017.png 이미지

Fig. 16. Calculation of the size of aspherical lens.

KGHHBU_2019_v30n4_146_f0018.png 이미지

Fig. 18. Simulation results of the parabolic reflector and aspherical lens with a pin.

Table 1. Simulation results of the parabolic reflector and aspherical lens

KGHHBU_2019_v30n4_146_t0001.png 이미지

References

  1. G. S. May and S. M. Sze, "Photolithography" in Fundamentals of semiconductor fabrication, 6th Ed. (John Wiley & Sons, NY, 2003), Chapter 4.
  2. M. H. Kim, "Design and analysis of compact exposure using UV LED," Dankook University, Gyeonggi (2015), p. 4.
  3. S. S. Bae, Y. W. Jung, Y. R. Kim, C. H. Song, J. Y. Song, and D. H. Kim, "Design of projection optics system for FPD exposure," in Proc. KSPE Annual Meeting (KSPE, Korea, Oct. 2004), p. 2.
  4. H. W. Jo, "The research of the optical focusing method using UVA LED array," Korea Polytechnic University, Gyeonggi (2017), p. 4.
  5. J. H. Seo, J. S. Lee, S. Y. Kim, Y. J. Jeong, H. J. Park, D. Y. Nam, and M. S. Jung, "Design of a bar-type TIR lens having a freeform surface for forming a line beam using an LED light source," J. Opt. Soc. Korea 28, 295-303 (2017).
  6. B. J. Kim, "Optimal design of LED lamp optics with a large area LED package for fulfilling a narrow beam angle," Inha University, Incheon (2014), pp. 9-11.
  7. D. K. Lee, "A study on development of an aspheric lens for the semiconductor laser applications," Chonnam National University, Gwangju (2014), p. 3.