Fig. 1. Schematic diagram of the OPO setup by using MgO:PPLN single crystal and a DPSS pump laser (Nd:YAG) for generating continuous-wave output in the mid-IR range (BS, beam splitter; CW DPSS, continuous-wave diode pumped solid state; HR@1064, high-reflectivity mirror at 1064 nm; HWP, half-wave plate; M, mirror; DM, dichroic mirror).
Fig. 3. Throughput obtained by 2-dimensional scanning of the parallel laser beam of light source at 4 different wavelengths.
Fig. 4. Wavelength dependence of the relative throughput obtained from the ratio of the two output measurements.
Fig. 5. The output of the mid-IR spectrometer for the input beam at the wavelength of 3.1 μm as a function of wavelength (vertical axis) and spatial coordinate (horizontal axis).
Fig. 2. (a) Schematic diagram showing the alignment of mid-IR light sources, the integrating sphere, the FTIR OSA and the mid-IR spectrometer. (b) A photograph showing the evaluation optical setup for the mid-IR spectrometer. (LIRS, Lunar InfraRed Spectrometer).
Table 1. Relative uncertainty and relative standard uncertainty of the individual components at 4 different wavelengths
References
- R. N. Clark, "Detection of adsorbed water and hydroxyl on the Moon," Science 326, 562-564 (2009). https://doi.org/10.1126/science.1178105
-
C. Y. Wang, T. Herr, P. Del'Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch1, N. Picque, and T. J. Kippenberg, "Mid-infrared optical frequency combs at 2.5
${\mu}m$ based on crystalline microresonators," Nat. Commun. 4, 1345 (2013). https://doi.org/10.1038/ncomms2335 - B. M. Walsh, H. R. Lee, and N. P. Barnes, "Mid infrared lasers for remote sensing applications," J. Lumin. 169, 400-405 (2016). https://doi.org/10.1016/j.jlumin.2015.03.004
- B. Y. Song, "Clinical predictive diagnostic study on prognosis of Bell's palsy with the digital infrared thermal image," J. Korean Acupunct. Moxibust. Soc. 18, 1-13 (2001).
- A. Colaprete, P. Schultz, J. Heldmann, D. Wooden, M. Shirley, K. Ennico, B. Hermalyn, W. Marshall, A. Ricco, R. C. Elphic, D. Goldstein, D. Summy, G. D. Bart, E. Asphaug, D. Korycansky, D. Landis, and L. Sollitt, "Detection of water in the LCROSS ejecta plume," Science 330, 463-468 (2010). https://doi.org/10.1126/science.1186986
- D. Ouzounov and F. Freund, "Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data," Adv. Space Res. 33, 268-273 (2004). https://doi.org/10.1016/S0273-1177(03)00486-1
- J.-P. Williams, D. A. Paige, B. T. Greenhagen, and E. Sefton-Nash, "The global surface temperatures of the Moon as measured by the diviner lunar radiometer experiment," Icarus 283, 300-325 (2017). https://doi.org/10.1016/j.icarus.2016.08.012
- M. Montanaro, A. Gerace, and S. Rohrbach, "Toward an operational stray light correction for the Landsat 8 thermal infrared sensor," Appl. Opt. 54, 3963-3978 (2015). https://doi.org/10.1364/AO.54.003963
- A. Gerace and M. Montanaro, "Derivation and validation of the stray light correction algorithm for the thermal infrared sensor onboard Landsat-8," Remote Sens. Environ. 191, 246-257 (2017). https://doi.org/10.1016/j.rse.2017.01.029
- Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, "Simple spectral stray light correction method for array spectroradiometers," Appl. Opt. 45, 1111-1119 (2006). https://doi.org/10.1364/AO.45.001111
- I.-H. Bae, H. S. Moon, S. Zaske, C. Becher, S. K. Kim, S.-N. Park, and D.-H. Lee, "Low-threshold singly-resonant continuous-wave optical parametric oscillator based on MgO-doped PPLN," Appl. Phys. B 103, 311-319 (2011). https://doi.org/10.1007/s00340-010-4297-y
- I.-H. Bae, S. D. Lim, J.-K. Yoo, D.-H. Lee, and S. K. Kim, "Development of a mid-infrared CW optical parametric oscillator based on fan-out grating MgO:PPLN pumped at 1064 nm," Curr. Opt. Photon. 3, 33-39 (2019). https://doi.org/10.3807/COPP.2019.3.1.033