• Title/Summary/Keyword: 튜브레일

Search Result 7, Processing Time 0.02 seconds

Impact Performance of Bridge Rail Composed of Composite Post and Tubular Thrie Beam (튜브형 트라이빔과 합성 지주를 사용한 교랑난간의 충격거동)

  • Ko, Man-Gi;Kim, Kee-Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.3
    • /
    • pp.313-325
    • /
    • 2001
  • Tubular bridge rail was developed to restrain and redirect a 14ton van-type truck. The developed bridge rail permits better visibility than concrete safety-shape bridge rail, and it has better structural adequacy than the existing steel and aluminum bridge rails in Korea. The new bridge rail consists of a tubular thrie beam(TTB) rail and a steel guard rail, which are connected to composite posts. The TTB shape provides both better containment of diverse bumper heights and more tight fit between the ends of bridge rail and roadside guardrails than the existing bridge rail sections currently used in Korea. Making composite post by filling concrete inside the steel pipe of the same size as are used for the roadside guardrail post was found to be more efficient in increasing the stiffness and ultimate strength than simply increasing the size of the steel pipe. The system was crash-tested for the impact condition of 14ton-80km/h-$15^{\circ}$, and it satisfied all evaluation criteria set forth in NCHRP Report 350 for a Test Level 4 safety appurtenance. Acceptable performances were obtained in computer simulations for the impact condition of S2.

  • PDF

Forming Analysis and Formability Evaluation for Aluminum Tube Hydroforming (알루미늄 튜브 하이드로포밍 성형 해석 및 성형성 평가)

  • Lim H. T.;Kim H. Y.;Kim H. J.;Lee D. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.243-246
    • /
    • 2005
  • A tube hydroformability testing system was designed and manufactured to observe the forming steps and to provide arbitrary combination of internal pressure and axial feed. The forming limit diagram of an aluminum tube was obtained from the free bulge test and the T-shape forming test using this system, giving the criteria for predicting failure in the hydroforming process. The hydroformability of aluminum tube according to different conditions of a prebending process was discussed, based on the finite element analysis and the forming limit test. The effects of 2D and 3D prebending on the tube hydroforming process of an automotive failing arm were evaluated and compared with each other.

  • PDF

Effect of Pipes Layout and Flow Velocity on Temperature Distribution in Greenhouses with Hot Water Heating System (방열관의 배치와 관내 유속이 온수난방 온실의 온도분포에 미치는 영향)

  • Shin, Hyun-Ho;Kim, Young-Shik;Nam, Sang-Woon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.335-341
    • /
    • 2019
  • In order to provide basic data for uniformization of temperature distribution in heating greenhouses, heating experiments were performed in two greenhouses with a hot water heating system. By analyzing heat transfer characteristics and improving pipes layout, measures to reduce the variation of pipe surface temperature and to improve the uniformity were derived. As a result of analyzing the temperature distributions of two different greenhouses and examining the maximum deviation and uniformity, it was found that the temperature deviation of greenhouses with a large amount of hot water flow and a short heating pipe was small and the uniformity was high. And it was confirmed that the temperature deviation was reduced and the uniformity was improved when the circulating fan was operated. The correlation between the surface temperature of the heating pipe and the indoor air temperature was a positive correlation and statistically significant(p<0.01) in both greenhouses. It was confirmed that the indoor temperature distribution in a hot water heating greenhouse was influenced by the surface temperature distribution of heating pipe, and the uniformity of indoor temperature distribution could be improved by arranging the heating pipe to minimize the temperature deviation. Analysis of the heat transfer characteristics of heating pipe showed that the temperature deviation increased as the pipe length became longer and the temperature deviation became smaller as the flow rate in pipe increased. Therefore, it was considered that the temperature distribution and the uniformity of environment in a greenhouse could be improved by arranging the heating pipe to shorten the length and controlling the flow velocity in pipe. In order to control the temperature deviation of one branch pipe within $3^{\circ}C$ in the tube rail type hot water heating system most used in domestic greenhouses, when the flow velocity in the pipe is 0.2, 0.4, 0.6, 0.8, $1.0m{\cdot}s^{-1}$, the length of a heating pipe should be limited to 40, 80, 120, 160, 200m, respectively.

조사재시험시설 풀물속에 설치된 1톤 버켓 엘리베이터 고찰

  • 송웅섭;이종헌;이홍기;주용선;홍권표
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.342-343
    • /
    • 2004
  • 조사재시험시설내 풀 ($3{\times}6{\times}10\textrm{m}^3$) 속에는 풀과 핫셀간에 조사재 및 연료를 핫셀로 이송할 수있는 버켓 엘리베이터(bucket elevator)가 설치되어 있다. 허용하중은 1톤이고, 버켓의 제원은 $25{\times}25{\times}150\textrm{cm}^3$ 이다. 버켓의 상하 운동은 체인구동 시스템으로 약 63도의 경사도를 갖고 움직이며, 체인은 사각 튜브의 내측면에 고정되어 있는 상하 가이드 레일 사이에서 특수 제작된 체인이 로울러 슬라이딩 방식으로 버켓의 lug를 잡고 상하로 움직이며 핫셀 작업대(working table) 하부에 설치되어 있는 스프로켓 휠(sprocket wheel)에 감기어 구동하도록 되어 있다.(중략)

  • PDF

Nondestructive Evaluation Using Electromagnetic-Acoustic Transducer (Electromagnetic-Acoustic Transducer를 이용한 비파괴평가)

  • Ahn, Bong-Young;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.4
    • /
    • pp.278-284
    • /
    • 1997
  • EMAT는 비접촉으로 초음파를 송수신 할 수 있는 탐촉자로서 시험체와 탐촉자간의 접촉을 위한 매개 물질이 필요치 않으므로, 움직이고 있는 물체에 초음파탐상법을 적용하고자 하는 분야와 초음파의 속도를 정밀하게 측정하고자 하는 분야에 주로 응용된다. 구체적으로는 길이가 긴 튜브류의 결함 탐상, 용접중인 재료의 용접상태 감시, 기차바퀴 및 레일의 결함 탐상, 고온상태인 재료의 결함 탐상 등이 비접촉 특성을 이용하여 적용될 수 있는 분야이며, 재료의 집합조직 및 소성이방성의 측정, 재료의 미세조직 및 기계적 강도의 예측, 그리고 잔류응력의 측정 등이 정밀한 초음파속도 및 감쇠의 측정으로부터 적용될 수 있는 분야이다. EMAT가 일반적인 접촉식초음파탐상법에 비하여 특별한 분야에의 응용에 큰 장점을 가지고 있지만, 낮은 에너지 전환효율, 넓은 불감영역, 그리고 사용주파수의 한계 등의 문제를 가지고 있기 때문에 기존의 접촉식 방법의 적용이 용이한 분야에의 적용은 필요하지 않다. 그러나 특별한 목적과 용도에의 적용 필요성이 생길 경우에는 적절한 연구를 통하여 알맞은 탐촉자를 제작하고 탐상 방법을 개발함으로서 본래의 목적에 알맞은 탐상이 수행될 수 있다.

  • PDF

Optimization of the Tube Bending Process of Taguchi's Orthogonal Matrix (다구찌 직교배열을 이용한 트레일링 암 튜브 벤딩 공정 변수 최적화)

  • Yin, Z.H.;Chae, M.S.;Moon, K.J.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.1
    • /
    • pp.67-72
    • /
    • 2009
  • This paper covers finite element simulations to evaluate tube bending process of auto chassis component i.e. trailing-arm product. The rear of the auto chassis structure is primarily composed of CTBA and trailing-arm. When a car rolls into a corner, the trailing arm reacts to roll in the same degree as the car body. During the bending process of trailing arm the tube undergoes significant deformation. Thus forming defects such as excessive thinning and flattening of the tube will be formed in the outside of the tube. In this paper, we analyzed the effect of process parameters in rotary draw bending process and searched the optimized combination of process parameters using orthogonal arrays method to minimize the forming defects. In this process we analyzed several parameters which are displacement of pressure die, boosting force, initial position of mandrel bar, dimensions of mandrel in regarding to the thinning and flattening of the tube.

Analysis of Heat Emission from Hot Water Pipe for Greenhouse Heating System Design (온실 난방시스템 설계를 위한 온수난방배관의 방열량 분석)

  • Shin, Hyun-Ho;Nam, Sang-Woon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.204-211
    • /
    • 2019
  • The purpose of this study is to provide basic data for setting environmental design standards for domestic greenhouses. We conducted experiments on thermal environment measurement at two commercial greenhouses where hot water heating system is adopted. We analyzed heat transfer characteristics of hot water heating pipes and heat emission per unit length of heating pipes was presented. The average air temperature in two greenhouses was controlled to $16.3^{\circ}C$ and $14.6^{\circ}C$ during the experiment, respectively. The average water temperature in heating pipes was $52.3^{\circ}C$ and $45.0^{\circ}C$, respectively. Experimental results showed that natural convection heat transfer coefficient of heating pipe surface was in the range of $5.71{\sim}7.49W/m^2^{\circ}C$. When the flow rate in heating pipe was 0.5m/s or more, temperature difference between hot water and pipe surface was not large. Based on this, overall heat transfer coefficient of heating pipe was derived as form of laminar natural convection heat transfer coefficient in the horizontal cylinder. By modifying the equation of overall heat transfer coefficient, a formula for calculating the heat emission per unit length of hot water heating pipe was developed, which uses pipe size and temperature difference between hot water and indoor air as input variables. The results of this study were compared with domestic and foreign data, and it was found to be closest to JGHA data. The data of NAAS, BALLS and ASHRAE were judged to be too large. Therefore, in order to set up environmental design standards for domestic greenhouses, it is necessary to fully examine those data through further experiments.